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Abstract

The Fuzzy Dark Matter (FDM) model posits that dark matter consists of
ultralight bosons with a mass m ∼ 10−22 eV. FDM has the potential to solve the
small-scale crisis of the standard Cold Dark Matter (CDM) model by suppressing
structure growth below its astrophysically relevant de Broglie wavelength. Yet,
cosmological simulations of FDM are extremely time-consuming because of the
oscillatory behaviour of FDM. They need to spatially resolve the potentially very
small de Broglie wavelength of FDM even in regions where the mass density is
low and smooth.

Fortunately, the non-relativistic equations of motion of FDM - the Schrödinger-
Poisson system (SPS) - admit a fluid formulation via the Madelung transform that
does not share this restriction. This thesis studies the fluid formulation of the
SPS in two ways:

Firstly, we employ non-linear time-dependent Eulerian perturbation theory to
predict structure formation and give a weak lensing view on FDM. We find that
a Euclid-like weak lensing survey can potentially be used to distinguish a FDM-
dominated universe from a CDM-dominated universe up to a mass of m = 10−22

eV. FDM models with higher masses are not distinguishable from CDM in our
weak lensing survey.

Secondly, we present a proof-of-concept for a hybrid scheme that solves the
fluid formulation of the SPS on large scales and switches to solving the wave
formulation of the SPS in regions of interference. This approach enables larger
simulation volumes by eliminating the need to resolve the de Broglie wavelength
on large scales. Our code correctly recovers FDM dynamics in a 3D simulation
where a large fraction of the simulation volume uses the fluid formulation.



Zusammenfassung

Das Fuzzy Dark Matter-Modell (FDM) postuliert, dass dunkle Materie aus
ultraleichten Bosonen mit einer Masse von m ∼ 10−22 eV besteht. FDM kann
potenziell die Probleme des Cold Dark Matter-Modells (CDM) auf kleinen Skalen
lösen: In FDM ist das Wachstum von Strukturen auf Skalen unterhalb der astro-
nomisch relevanten de Broglie-Wellenlänge unterdrückt. Eine Schwierigkeit des
FDM-Modells besteht darin, dass astronomische Simulationen von FDM außer-
ordentlich rechenaufwendig sind. Das liegt daran, dass FDM auf kleinen Skalen
oszilliert und Standardsimulationen die de Broglie-Wellenlänge von FDM auch
dort räumlich auflösen müssen, wo die Massendichte gering und glatt ist.

Glücklicherweise erlauben die nichtrelativistischen Bewegungsgleichungen von
FDM - die Schrödinger-Poisson-Gleichungen (SPS) - eine Formulierung als Sys-
tem von Fluidgleichungen: den sogenannten Madelunggleichungen. Diese Arbeit
nutzt die Madelunggleichungen, um die numerischen Schwierigkeiten bei der Sim-
ulation des SPS auf zwei Arten zu umgehen:

Im ersten Teil der Arbeit wenden wir Eulersche Störungstheorie auf die Made-
lunggleichungen an, um kosmologische Strukturbildung in FDM und CDM zu
vergleichen. Wir zeigen, dass Beobachtungen des schwachen Gravitationslinsenef-
fektes von Galaxien in einer Messung wie der des Weltraumteleskops Euklid gen-
utzt werden können, um FDM und CDM bis zu einer Masse von m = 10−22 eV
zu unterscheiden. Höhere Massen im FDM-Modell führen zu einer kleineren de
Broglie-Wellenlänge und zu Unterschieden zum Standard-CDM-Modell außerhalb
des mithilfe des schwachen Gravitationslinseneffektes messbaren Bereichs.

Im zweiten Teil der Arbeit entwickeln wir den Prototypen eines Hybrid-Codes,
der kosmologische Strukturbildung im FDM-Modell simuliert. Er löst auf großen
Skalen die Madelunggleichungen und auf kleinen Skalen die Wellengleichungen
vom FDM. Ein solcher Ansatz erlaubt größere Simulationsvolumina, da die de
Broglie-Wellenlänge auf großen Skalen nicht aufgelöst werden muss. Unser Demon-
strationscode beschreibt in einer 3-D-Simulation Interferenzeffekte von FDM auf
kleinen Skalen korrekt, während ein Großteil des Simulationsvolumens die Made-
lunggleichungen nutzt.
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Notations and Conventions

SPS Schrödinger-Poisson system;

CDM Cold Dark Matter (model);

ΛCDM Flat CDM model with cosmological constant;

FDM Fuzzy Dark Matter (model);

EdS Einstein-de Sitter cosmology with Ωm = 1;

FC Fiducial Cosmology;

IC Initial Conditions;

MC Monte Carlo;

CFD Computational Fluid Dynamics;

AMR Adaptive Mesh Refinement;

FDM Finite Difference Method;

FVM Finite Volume Method;

ODE Ordinary Differential Equation;

PDE Partial Differential Equation;

CFL Courant-Friedrichs-Lewy;

TVD Total Variation Diminishing;

RK Runge-Kutta;

FTCS Forward-in-Time-Centered-in-Space;

MUSCL Monotone Upstream Scheme for Conservation Laws;

Table 1: Abbreviations
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Ωm Total matter density in units of the critical density;

Λ Cosmological constant;

ΩΛ Reduced cosmological constant;

H0 Hubble constant at present time;

w Dark energy equation of state parameter;

a Scale factor;

aosc Time where linear density fluctuations stop oscillating;

τ Conformal time, dt = a dτ ;

H Conformal expansion rate, H = aH;

η Modified conformal time η = 2
√
a in EdS where

τ = H0Ω1/2
m,02

√
a;

D Linear growth factor;

kJ(a) Comoving Jeans scale;

λJ(a) Comoving Jeans wavelength;

`J(a) Jeans multipole order;

Table 2: Notation for Various Cosmological Variables

x Comoving position in real space;

ρ(x) Local cosmic density;

ρb(t) Background density;

δ(x) Local density contrast, δ = ρ/ρb − 1;

φ(x) Newtonian gravitational potential;

v(x) Local peculiar velocity field;

θ(x) Local velocity divergence in units of H = aH;

Fn nth order density field kernel;

Gn nth order velocity divergence field kernel;

Table 3: Notation for the Cosmic Fields
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P (k) Density power spectrum;

B(k1, k2, k3) Matter bispectrum;

T (k1, k2, k4, k4) Matter trispectrum;

Pκ(`) Lensing spectrum;

Bκ(`1, `2, `3) Lensing bispectrum;

Tκ(`1, `2, `4, `4) Lensing trispectrum;

ΣP (`) Cumulative signal-to-noise ratio of lensing spectrum;

ΣB(`) Cumulative signal-to-noise ratio of lensing bispectrum;

ΣT (`) Cumulative signal-to-noise ratio of lensing trispectrum;

χ2
P (`) χ2-functional for distinguishing CDM and FDM using

the lensing spectrum;

χ2
B(`) χ2-functional for distinguishing CDM and FDM using

the lensing bispectrum;

χ2
T (`) χ2-functional for distinguishing CDM and FDM using

the lensing trispectrum;

Table 4: Notation for Statistical Quantities

Momentum
Sums

kijk... ≡ ki + kj + kk + . . .

Fourier
Integrations

f(k) =
∫ d3x

(2π)3 exp(−ik · x)f(x)

Momentum
Integrations

δD(k − k12)f(k1)g(k2) ≡∫ d3k1d3k2
(2π)6 δD(k − k12)f(k1)g(k2)

Table 5: Conventions

H(a) H0

√
Ωma−3 + ΩΛa−3(1+w)

H0 67.3km
s

1
Mpc

Ωm,0 0.3159

ΩΛ 1 − Ωm,0

w −0.9

Table 6: Fiducial Cosmology (FC) used in chapters 3 and 4.
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fsky Fraction of sky covered by survey; 0.5

`min Minimum multipole moment considered; 10

`max Maximum multipole moment considered; 10000

σε Standard deviation of intrinsic ellipticities of galaxies;
0.42

n̄ Average number of galaxies per steradian; 4.727 · 108

z0 Mean redshift; 0.9

Table 7: Parameter set used for Euclid-like weak lensing survey in chapter 4.
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1 INTRODUCTION

1
Introduction

The standard Cold Dark Matter (CDM) model with a non-zero cosmological
constant Λ, commonly referred to as ΛCDM, assumes that the largest contribu-
tions to the mass-energy of the universe are dark energy and dark matter that
respectively make up 68 ± 1% and 27 ± 1% of the total energy content of the
universe (Collaboration et al. 2018). There are a number of experimental con-
firmations of the ΛCDM model such as observations of the mass-to-light-ratio
of clusters of galaxies (Bahcall, Lubin and Dorman 1995), the rotation curves of
galaxies, (Einasto, Kaasik and Saar 1974), the Bullet cluster (Clowe et al. 2006),
the cosmic microwave background (CMB) (Collaboration et al. 2018) and the
large-scale structure of the universe (Tegmark et al. 2004). While cosmological
simulations in the ΛCDM model allow the prediction of structure growth in the
deeply nonlinear regime, there are significant discrepancies between numerical
predictions and the observed structures on small scales of ∼ 10 kpc or less. This
fact is referred to as small-scale crisis of CDM. Actually one can distinguish a
number of small scale crises (Weinberg et al. 2013; Bullock and Boylan-Kolchin
2017):

The missing satellites problem describes that CDM predicts more small Milky
Way satellite galaxies than are observed. Halos in CDM simulations contain
thousands of sub-halos, some of which would host galaxies. This is in conflict
with observations of the Milky Way which indicate around 50 satellite galaxies.

The too-big-to-fail problem refers to the fact that the local universe contains
too few galaxies indicative of very massive halos (M ∼ 1010M�). Such halos are
abundant in CDM simulations and believed to be too massive to have failed to
form stars. It is unclear why they are missing in the local universe.

Finally, the cusp-core-problem is related to the predicted density profile of
CDM halos. CDM halos have a universal shape well approximated by the so-
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1 INTRODUCTION

called Navarro–Frenk–White profile (Navarro, Frenk and White 1995). At small
radii, the NFW profile predicts that the halo density scales as ρ(r) ∝ r−1, whereas
dark matter-dominated, dwarf spherical galaxies favour a flat halo center.

There are a number of different proposed solutions to the small-scale crises of
CDM. On the one hand, they may be solved by properly modelling astrophysical
processes like supernova explosions that may smooth out small-scale structure.
On the other hand, there are a number of different modifications of the CDM
model like the Warm Dark Matter model (Colin, Avila-Reese and Valenzuela
2000), dark matter models with self-interactions (Spergel and Steinhardt 2000)
or the Decaying Dark Matter model (Cheng, Chu and Tang 2015).

Another such model is the Fuzzy Dark Matter (FDM) model first proposed by
Hu, Barkana and Gruzinov (2000). It describes dark matter as a bosonic, scalar
field composed of very light particles with mass m ∼ 10−22 eV with negligible self
interactions and a macroscopic de Broglie wavelength. The FDM bosons are also
called axions 1. Axions are a well-motivated addition to the standard-model of
particle physics. They can explain the CP-violation and are naturally generated
in supersymmetric theories and theories with extra-dimensions including string
theory (Marsh 2016). In the following, it will not be important that the FDM
particle is an axion or an axion-like particle. We only assume that the particle is
bosonic, non-relativistic and has negligible self-interaction.

The dynamics of FDM in the non-relativistic limit are governed by the
Schrödinger-Poisson equation (SPS). Because of its small mass, the FDM axion
has an astrophysically relevant de Broglie wavelength at the order of a few kilo-
parsecs. Its wave-like behaviour suppresses structure formation on small scales
while one recovers CDM behaviour on large scales. The FDM model therefore
has the potential to solve the small-scale crisis of CDM. One problem in the study
of the FDM model is that cosmological simulations of FDM are computationally
very demanding. For this reason, they are limited to small simulation volumes
compared to CDM simulations. The underlying reason is that the SPS suggests
an inherently Eulerian view and requires the spatial resolution of the de Broglie
wavelength of the FDM even where the matter density is low and smooth. In
contrast, the spatial grid in N -body simulations of CDM does not have any res-
olution limits because N -body methods are inherently Lagrangian. Fortunately,
one can recast the SPS into a hydrodynamical form: the Madelung equations.
The Madelung equations are Euler-Poisson equations with an additional scale-
dependent modification, the so-called quantum pressure term. On large scales,

1The term axion is used to refer to a number of scalar particles with different masses. It
was first proposed as a solution to the strong CP problem in QCD (Peccei 1996) and owes its
name to an American laundry detergent.
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1 INTRODUCTION

this term vanishes and one recovers the ideal fluid equations for CDM. One might
wonder why one would exchange a single linear differential equation for a coupled
nonlinear system of differential equations. One of the appeals of the Madelung
transform lies in being able to apply standard cosmological perturbation theory
to the SPS. Another advantage lies in being able to apply hydrodynamics codes
that have less stringent spatial resolution requirements than Schrödinger-Poisson
solvers.

This thesis makes two contributions to better understanding cosmological
structure formation in the FDM model: In the first part of the thesis, we study
the role of FDM in structure formation by applying Eulerian perturbation the-
ory to the Madelung equations. We compute the lensing spectra, bispectra and
trispectra in CDM and FDM and determine the attainable cumulative signal-to-
noise ratios in a Euclid-like weak lensing survey. Finally, we give an estimate of
the attainable χ2-functionals for distinguishing CDM and FDM at three different
masses. In the second part of this thesis, we combine the wave and fluid formu-
lations of the SPS to create a hybrid scheme that uses the fluid formulation on
large scales and the wave formulations in regions of destructive interference.

The plan of the thesis is as follows: In chapter 2 we derive the SPS as well
as equivalent formulations of the SPS using the Madelung transform. In chapter
3, we introduce linear and non-linear Eulerian perturbation theory for CDM and
develop a framework for time-dependent perturbation theory for FDM. In chapter
4, we use perturbation theory to compare CDM and FDM in a weak lensing
survey. Finally, chapter 5 gives an introduction to the numerical methods used
for solving partial differential equations and develops a proof-of-concept code for
the hybrid scheme.

Page 3



2 SPS

2
Schrödinger-Poisson System

This chapter gives a motivation of the dynamical equations governing FDM:
the Schrödinger-Poisson system (SPS) of equations. The SPS emerges as the non-
relativistic limit of the Klein-Gordon-Einstein equation in a geometry described
by the perturbed Friedmann-Lemaître-Robertson-Walker (FLRW) metric in New-
tonian gauge. After deriving the SPS, we introduce the Madelung transform and
discuss its interpretation as well as other equivalent forms of the SPS. We draw
heavily on the review paper by Marsh (2016).

2.1 Derivation

Consider a (pseudo-)scalar field ϕ minimally coupled to gravity

S = 1
~c2

∫
d4x

√
−g

[
1
2g

µν∇µϕ∇νϕ− 1
2
m2c2

~2 ϕ2
]
, (1)

where we follow the convection in (Hui et al. 2017). The scalar field ϕ has units
of energy and m is the axion mass. This action is invariant under parity- and
time-inversion because it is quadratic in ϕ. For QCD axions, this action is valid
after symmetry breaking and after non-perturbative effects have been switched
on. Further, we neglect possible self-interactions of the axion. The equations of
motion are obtained by varying the action with respect to ϕ

�ϕ+ ∂V

∂ϕ
= 0, (2)

where the d’Alembertian is

� = 1√
−g

∂µ(
√

−ggµν∂ν). (3)
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2.1 Derivation 2 SPS

If the background metric is given by the flat FLRW metric, the background
evolution of the axion reads

ϕ̈+ 3Hϕ̇+ m2c2

~2 ϕ = 0. (4)

In a matter- or radiation-dominated universe, the scale factor evolves as a power
law a ∝ tp and Eq. (4) admits the analytical solution

ϕ = a− 3
2

(
t

ti

) 1
2
[
C1Jn

(
mc

~
t
)

+ C2Yn

(
mc

~
t
)]
, (5)

where n = (3p−1)/2, Jn(x), Yn(x) are Bessel functions of the first and second kind
and ti is the initial time. The dimensionful coefficients C1 and C2 are determined
by initial conditions.

In the next step, one can study solutions of the relativistic axion e.o.m. (2)
by allowing perturbations of the flat FLRW metric. Further, we can apply a non-
relativistic approximation for studying structure formation. This is because the
virial velocity in a typical galaxy vvir ∼ 100km

s
� c and galaxies are much smaller

than the Hubble horizon. On the lower scale end, we are concerned with scales
above the axion Compton wave length ~

m
c which would correspond to relativistic

scales in the Klein-Gordon equation. Except in the vicinity of black holes, the
Newtonian potential φ obeys |φ| /c2 � 1. Therefore, the Newtonian limit is
appropriate and we can adopt the perturbed FLRW metric

ds2 =
(

1 + 2φ
c2

)
c2dt2 − a2(t)

(
1 − 2φ

c2

)
dx2 (6)

in Newtonian gauge. To leading order in φ, the d’Alembertian is then given by

� = −(1 − 2φ)(∂2
t + 3H∂t) + a−2(1 + 2φ)∆ − 4φ̇∂t, (7)

and the axion energy density is

ρa = 1
2((1 − 2φ)ϕ̇2 +m2ϕ2 + a−2(1 + 2φ)∂iϕ∂iϕ). (8)

To study the clustering of axions on non-linear scales, we can take the WKB-
approximation of the form

ϕ =
√
~3c

2m(ψe− imc2t
~ + ψ∗e

imc2t
~ ), (9)

where ψ is a complex scalar field because axions that cluster on galactic scales
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2.1 Derivation 2 SPS

began oscillating in the very early universe. We apply the previous considerations
by taking φ ∼ ε2, k/m ∼ ε and H/m ∼ ε and work to order O(ε2). Further, we
assume the non-relativistic approximation |ψ̇| � mc2

~ |ψ|. The assumption ∂t � m

is non-relativistic because we have ∂t ∼ ∆/m ∼ k2/m and therefore k2/m � m.
With these simplifications, we obtain the

Comoving Schrödinger-Poisson Equation

i~
(
∂tψ(x, t) + 3

2Hψ(x, t)
)

=
(

− ~2

2ma2 ∆ +mφ(x, t)
)
ψ(x, t), (10)

∆φ(x, t) = 4πGa2(|ψ(x, t)|2 − ρb(t)), (11)

where ρb(t) is the background density and |ψ|2 measures the density in a
proper volume.

We supplement the Schrödinger-Poisson equation by the normalisation con-
dition ∫

ρ(x, t)d3x = Nm, (12)

which fixes the density ρ = |ψ|2 for N axions of mass m. In Eq. (10), positions of
particles are described using comoving coordinates x. Substituting back physical
coordinates yields the familiar Schrödinger equation in a static universe. See
appendix A.1 for a brief introduction into Newtonian cosmology. The imaginary,
dissipative term on the left hand side of Eq. (10) is due to the Hubble flow. We
can decompose the density field into the background density ρ̄(t) and the density
perturbation δρ(x, t) as

ρ(x, t) = ρb(t) + δρ(x, t) = ρb(t)(1 + δ(x, t)), (13)

where
δ(x, t) = δρ(x, t)

ρb(t)
(14)

is the matter density contrast. We know that ρb(t) ∝ a−3 where a−3 is the
conversion to proper space density. In other words, the Hubble friction term in Eq.
(10) expresses the fact that the matter density is measured in a proper volume.
Fortunately, we can restore hermiticity of the Hamiltonian by substituting ψ →

Page 6



2.2 Madelung Transform 2 SPS

a− 3
2ψ′ to obtain

i~∂tψ′(x, t) =
(

− ~2

2ma2 ∆ +mφ(x, t)
)
ψ′(x, t), (15)

∆φ(x, t) = 4πG
a

ρ′
bδ

′(x, t), (16)

where |ψ′|2 measures the density in a comoving volume. Following (Schive, Chiueh
and Broadhurst 2014), we can further recast Eq. (10) into a more familiar form
via the transformation

dt → a2dt′ (17)

yielding the set of equations

i~∂t′ψ′(x, t′) =
(

− ~2

2m∆ +mφ(x, t′)
)
ψ′(x, t′), (18)

∆φ′(x, t′) = 4πGaρ′
bδ

′(x, t′), (19)

where the cosmological expansion shows through the scale factor a acting as a
time-dependent coupling strength for the gravitational potential. The coupling
increases monotonically with time 2. At this point, a remark about the physical
interpretation of the Schrödinger-Poisson equation in the context of FDM is in
order. Even though the above equations share the structure of the quantum-
mechanical Schrödinger equation, they are not quantum-mechanical results. We
only required the constant ~ to have dimensions of an action, but did not fix
it to any particular value. In fact, ~ and the mass m appear only in the form
of the ratio ~/m in the SPS which is why one can also interpret ~/m as the
free parameter of the theory. Hence, we must interpret Eq. (10) as e.o.m. of
a classical field theory in the non-relativistic limit that happen to coincide with
their quantum-mechanical counterpart. Interference effects in FDM are classical
in nature.

2.2 Madelung Transform

We can make contact with standard perturbation theory and non-linear sim-
ulation tools by recasting the nonlinear Schrödinger equation into a fluid form.
To this end we substitute

ψ(x, t) =:
√
ρ(x, t)
m

eiS(x,t), (20)

2This formulation is very useful in developing numerical schemes for describing FDM dy-
namics since there is no need to include terms resulting from the Hubble flow.
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for real fields ρ(x, t) and S(x, t) into Eq. (10). Computing the e.o.m for the
newly defined fields in comoving coordinates under the assumption that ρ 6= 0,
one obtains the

Hamilton-Jacobi-Madelung Equations

∂tρ+ 3Hρ+ 1
a

∇ ·
(
ρ

~
ma

∇S
)

= 0, (21)

∂tS +HS + ~
2ma2 (∇S)2 + m

~
φ+ m

~a2QP = 0, (22)

∆φ(x, t) − 4πGa2ρb(t)δ(x, t) = 0, (23)

where QP is usually referred to as quantum pressure and is defined as

2m2

~2 QP = −
∆√

ρ
√
ρ

= −1
2∆ log ρ− 1

4(∇ log ρ)2. (24)

Bohm (1952) first derived this set of equations in a static universe on a static,
flat spacetime in the context of quantum mechanics. He was to trying to find a
new physical interpretation for Schrödinger’s equation. We note that for ~ → 0,
in other words in the classical limit in the context of the quantum-mechanical
Schrödinger equation, Eq. (22) reduces to the classical Hamilton-Jacobi equation.
If we understand the quantum pressure term Eq. (24) as a potential that acts
on particles in addition to the gravitational potential φ, we can still consider Eq.
(21) as a Hamilton-Jacobi equation for an ensemble of particles, with

v = ~
ma

∇S = i~
2am|ψ|2

(ψ∇ψ∗ − ψ∗∇ψ) (25)

giving the particle velocity. This interpretation immediately leads to the so-called
Madelung transform (Madelung 1927) where one takes the gradient of Eq. (21)
and thereby obtains the

Madelung equations

∂tρ+ 3Hρ+ 1
a

∇ · (ρv) = 0,

∂tv +Hv + 1
a

(v · ∇)v + 1
a

∇φ+ 1
a3 ∇QP = 0,

∆φ(x, t) − 4πGa2ρb(t)δ(x, t) = 0.

(26)
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2.2 Madelung Transform 2 SPS

The Madelung equations describe the Schrödinger equation via a system of
fluid equations for frictionless, compressible flow in an external potential φ. The
flow gets modified by the quantum pressure QP that accounts for the underlying
wave dynamics in FDM. For a narrowly located source, the quantum pressure
is large and reflects the Heisenberg uncertainty principle in quantum mechanics.
For large scales, on the other hand, the Madelung equations reduce to the Euler
equations of a pressureless fluid and we recover the dynamics of standard cold
dark matter 3:

Euler-Poisson equations

∂tρ+ 3Hρ+ 1
a

∇ · (ρv) = 0, (27)

∂tv +Hv + 1
a

(v · ∇)v + 1
a

∇φ = 0. (28)

∆φ(x, t) − 4πGa2ρb(t)δ(x, t) = 0. (29)

This underlines once again that FDM represents a modification of CDM on
small scales and therefore has the potential to resolve the small-scale crisis in
CDM. A few remarks about the mathematical structure of the Madelung equa-
tions: Firstly, the quantum pressure QP is not technically a pressure since it
arises from the off-diagonal elements of a stress-tensor. It is therefore equivalent
to an anisotropic pressure stress 4. This can be seen from the equivalent form of
the Euler equation in Eq. (26)

∂(ρvi)
∂t

+ 4Hρvi + 1
a

∂

∂xj
(ρvivj + Pij) = −ρ ∂φ

∂xi
, (30)

where
1
m

∇QP = a2

ρ
∂jPij, (31)

with
Pij = − ~4

2m2a2ρ∂i∂j log(ρ) = ~4

4m2a2

(
1
ρ
∂iρ∂jρ− δij∆ρ

)
. (32)

3The Euler equations for CDM are derived assuming that the scales of typical structure
are much larger than the typical inter-particle spacing and typical timescales are much larger
than the 2-body relaxation time of the system. In this case, a system of N � 1 collisionless
particles of mass m interacting gravitationally in an expanding universe can be described using
the Vlasov equation (Widrow and Kaiser 1993). Taking momentum moments of the Vlasov
equation then yields the continuity and Euler equation. Higher-order moments can be neglected
before virialisation and shell-crossing occur.

4However, unlike pressure in a real fluid, the quantum pressure can also become negative
which poses problems when incorporating it into standard hydrodynamics codes.
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This form also suggests the definition of the momentum-flux-density tensor

Πij = ρvivj − Pij

= ~2

4ma2 (∂iψ∗∂jψ + ∂iψ∂jψ
∗ − ψ∗∂i∂jψ − ψ∂i∂jψ

∗),
(33)

up to the addition of a divergence-free tensor. As before, we can account for the
effects of cosmological expansion via a change of variables:

dt → a2dt′, ρ → a−3ρ′, (34)

and obtain the set of equations

∂t′ρ
′ + ∇ · (ρ′v) = 0,

∂t′v + (v · ∇)v + ∇φ+ ∇Q′
P = 0,

∆φ− 4πGaρ′
bδ

′ = 0.

(35)

To sum up, we have derived the fluid description of the Schrödinger-Poisson
system. It states the the dynamics of the Schrödinger equation can be thought
of as that of a frictionless flow with a special type of pressure that accounts for
the Heisenberg uncertainty principle. The fluid description is amenable to fluid
perturbation theory and can be integrated into existing hydrodynamics codes.
However, it suffers from a significant drawback that we have neglected so far:
In deriving the phase and fluid descriptions, we assumed that the density ρ was
non-vanishing everywhere. For this reason, Eqs. (21) and (22) are not equivalent
to Eq. (10) unless supplemented by the quantisation condition

∮
v · dx = n

~
m

n ∈ N, (36)

first derived by Wallstrom (1994). 5 This quantisation condition guarantees that
the wave function obtained by inverting the Madelung transform is single-valued
everywhere in its domain. In practice, the phase/fluid formulation of the SPS
is valid unless the wave function develops points with ψ = 0. Yet, this is quite
common in wave dynamics. Think of the destructive interference of two waves,
for instance. Therefore, we shall always check whether the application of the fluid
formulation is justified in the following. In perturbation theory, for instance, the

5Note the similarity to the Bohr-Sommerfeld-quantisation condition for quantum systems∮
H(p,q)=E

p dq = 2πn~, n ∈ N, (37)

where H is the Hamiltonian p and q are canonically conjugate variables.
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fluid formulation remains valid as long as the perturbation theory itself remains
valid. At the same time, evolving FDM dynamics using standard fluid dynamics
codes will in general give incorrect results. Li, Hui and Bryan (2018) and Zhang,
Liu and Chu (2019) give a discussion the of the limitations of fluid solvers for
simulating FDM dynamics.

2.3 Symmetries

In this section, we briefly recapitulate symmetries of the Schrödinger-Poisson
system in the form given by Eqs. (18) and (19):

i~∂tψ =
(

− ~2

2m∆ +mφ

)
ψ, (38)

∆φ = 4πaG(|ψ|2 − ρb). (39)

We find conservation of the norm of the wave function

d
dt

(∫
dx|ψ(x, t)|2

)
= 0, (40)

because of invariance of the action under global phase changes ψ(x, t) −→ eiφψ(x, t),
momentum conservation

d
dt

(
−i
∫

dxψ∗∂xψ
)

= d
dt

(
Im

∫
dxψ∂xψ∗

)
= 0, (41)

because of spatial translation invariance ψ(x, t) −→ ψ(x−x′, t) and conservation
of angular momentum due to rotational invariance of the gravitational potential.
The SPS also retains invariance under inertial frame changes of the form

ψ(x, t) −→ ei(vx− 1
2v

2t)ψ(x− vt, t), (42)

and conserves the Galileian boost operator. In a static universe, we also find time
translation invariance and therefore conservation of total energy. The Made-
lung equations Eqs. (35) provide a different view on the symmetries of the SPS.
Norm conservation translates into mass conservation and momentum conserva-
tion immediately follows because the Euler equation is obtained as gradient of
the Hamilton-Jacobi equation. Note that the flow described by the Madelung
equations is therefore irrotational. 6.

6The SPS can, however, develop vortices which is why we require the quantisation condition
(36).
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2.4 Thermodynamics 2 SPS

2.4 Thermodynamics

Heifetz and Cohen (2015) provide a thermodynamic view on the Madelung
fluid by comparing it to a fluid with classical barotropic conservative flow. We
consider the first law of thermodynamics dI = −PdV , where I is the thermal
internal energy of a barotropic, frictionless fluid. When following a fluid parcel
in motion, the adiabatic first law transform into

ρ
D

Dt
I = −P log(δV ) = −P∇ · v, (43)

where D
Dt

= ∂
∂t

+v ·∇ is the convective derivative. Multiplying the Euler equation
for a compressible, potential flow

∂v

∂t
+ (v∇)v = −1

ρ
∇P, (44)

by ρv and combining it with Eq. (43), one obtains

ρ
D

Dt
(K + I + U) = −∇ · (vP ), (45)

where K is the kinetic energy, I is the internal energy and U is an external
potential. The total energy of a fluid parcel per unit mass E = (K + I + U), is
not materially conserved because of the surrounding pressure. Nevertheless, the
overall total energy of the fluid is conserved in the domain averaged sense

〈E〉 = 〈K〉 + 〈I〉 + 〈U〉 = −∇ · (vP ). ∂
∂t

∫
Ed3x = 0. (46)

We can now compare this to the energy expectation value of the Schrödinger
equation which can be expressed via the quantum pressure as 7

〈E〉 = 1
2

∫
ψ∗
(

− ~2

2m∆ +mφ

)
ψ d3x =

〈
v2

2 +QP +mφ

〉
. (47)

This view suggests that the expectation value of the internal energy of the fluid
could be identified with the expectation value of the quantum pressure term
〈Q〉 = 〈I〉, an interpretation also suggested in (Dennis, Gosson and Hiley 2014).

7This can also be seen via defining the energy as time-derivative of the Hamilton-Jacobi
equation E(x, t) = − ∂S

∂t and then taking the spatial average with integration by parts assuming
vanishing boundary terms:

〈E〉 =
∫
ρ

(
(∇S)2

2m +mφ− ~2

2m
(∇√

ρ)2

√
ρ2

)
d3x.
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Note that while the quantum pressure itself is not positive-definite, its expectation
value after integration by parts can be expressed as

〈QP 〉 =
〈

1
2

(
~

2m∇(ln ρ)
)2〉

≡ I, (48)

where I is the internal energy per unit mass. Recami and Salesi (1998) therefore
suggest the following partition

Sr = log
(√

ρ

m

)
, Si = S (49)

vr = − ~
ma

∇Sr, vi = ~
ma

∇Si. (50)

It has been used by Szapudi and Kaiser (2003) to derive Eulerian perturbation
theory from the Schrödinger equation in terms of the logarithm of the density
contrast (see Coles and Jones (1991) for more information on the lognormal model
for cosmological mass distribution). The energy can now be expressed as

〈E〉 =
∫
ρ

(
v2
i

2 + v2
r

2 − m

~
φ

)
d3x (51)

In this interpretation, the macroscopic energy of the flow is v2
r

2 and the microscopic
thermal motion is v2

i

2 . We can derive the corresponding equations of motions from
Eq. (11) by substituting ψ(x, t) = eSr(x,t)+iSi(x,t):

Convective form of the Madelung equations

D

Dt
Sr + 3

2H + ~
2ma2 ∆Si = 0,

D

Dt
Si + SiH − ~

2ma2 ∆Sr = am

2~
(
v2
i + av2

r

)
− m

~
φ,

(52)

where we define the convective derivative D
Dt

= ∂
∂t

+ vi · ∇.

This set of equations expresses that Sr and Si both obey a type of coupled
convection-diffusion equation where the convection of the phase Si is driven by
the energy of the system as source. Contrast this with the usual form of the
Schrödinger equation where <(ψ) and =(ψ) obey a coupled diffusion equation 8.

8In fact, there are two coupled diffusion processes with opposite sign between the real and
imaginary part of the wave function that exactly balance each other out to preserve the norm
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Remark 1: Advection and waves

Consider the one-dimensional linear convection equation

ut + aux = 0. (54)

This equation describes the transport of the quantity u by the constant
convection velocity a. Given an arbitrary initial profile u(x, t = 0) = u0(x),
the solution to the advection equation Eq. (54) is given by

u(x, t) = u0(x− at). (55)

This equation can be understood as a wave propagation equation where a
wave of amplitude u propagates with the phase propagation speed a. A
plane wave of amplitude û, wavelength λ, and frequency ω

u = ûei(kx−ωt), (56)

where k = 2π/λ is a solution of the advection equation if ω = ak. Hence,
plane wave solutions of the advection equation satisfy the basic relation
between wavelength and frequency f = a/λ. In other words, pure convec-
tion and wave propagation are equivalent (Hirsch 2007).

We call PDEs admitting solutions that describe wave-like phenomena hyper-
bolic. This is in contrast to parabolic PDEs that describe damped spatial waves
and elliptic PDEs that do not admit wave-like solutions. The heat diffusion
equation of Fourier

∂u

∂t
= α

∂2u

∂x2 (57)

is an example of a parabolic PDE. It describes heat conduction in solids or fluids
at rest and admits the solution

u = ûeikxe−αk2t. (58)

This solution represents an exponentially damped spatial wave for positive α.
The Poisson equation

∆u = q (59)

of the wave function:

<
(
∂ψ

∂t

)
= − ~

2m= (∆ψ) , =
(
∂ψ

∂t

)
= ~

2m< (∆ψ) . (53)
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is an example of an elliptic PDE. It describes pure diffusion in space and does
not admit wave-like solutions. The Schrödinger equation is similar to the heat
equation, but with an imaginary diffusion coefficient and is therefore hyperbolic.
This is reflected by the fact that the Madelung equations are a set of hyperbolic
conservation laws.

2.5 Numerical Experiments

Below, we describe a number of one-dimensional tests in order to study
the SPS system as well as the quantum pressure and convection terms in the
Hamilton-Jacobi-Madelung equation. This section draws on (Li, Hui and Bryan
2018) for the first test without gravity and adds a second test with gravity to
demonstrate the absence of cusps in FDM simulations first pointed out by Hu,
Barkana and Gruzinov (2000). All figures and animations in this and the fol-
lowing sections were created using the wonderful Matplotlib-library (Hunter
2007).

2.5.1 Gaussian Wave Packet

The 1D free Schrödinger equation is solved by a Gaussian wave packet with

ψ(x, t) =
√√√√ 1
α + i~t

m

exp
(

− x2

2(α + i~t
m

)

)
, (60)

where α is a constant that specifies the width of the wave packet. The density
and velocity follow as

ρ = 1√
α2 + ~2t2

m2

exp
(

− αx2

α2 + ~2t2

m2

)
, v = x

α2 + ~2t2

m2

~2t

m2 . (61)

Figure 1 shows the comparison between the numerical solution with and without
quantum pressure and terms in the Euler equation (26). The simulation starts
at t = 0 with α = 1/20. On the one hand, the quantum pressure term drives
the dispersion of the wave packet. In the absence of quantum pressure, the wave
packet remains unchanged. The absence of convection in the Euler equation, on
the other hand, accelerates the dispersion of the wave packet.

The free Schrödinger equation also admits a solution where a single Gaussian
wave packet moves with momentum ~k:

ψ(x, t) =
√

α

α + i ~
m
t

exp
(

−(x+ x0 − ikα)2

2(α + i ~
m
t)

)
exp

(
−αk2

2

)
. (62)
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Figure 1: Comparison of analytical and numerical results for density evolution of a standing
Gaussian wave packet at time t = 0.1 in code units.

Figure 2 shows this situation for α = 1/500 and k = 20π. As before, the quantum
pressure term drives the dispersion of the wave packet and interestingly, the
absence of the convective term in the Hamilton-Jacobi equation modifies the
dispersion of the wave packet.
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Figure 2: Comparison of analytical and numerical results for density evolution of a travelling
Gaussian wave packet at time t = 0.0025 in code units.
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2.5.2 Gravity

In this example, we consider the superposition of plane waves and a constant
background density as initial conditions for a simulation with gravity: 9

ψ(x, t = 0) = 1 +
N∑
n=0

(αn cos(2π(n+ 1)x/L) + βn sin(2π(n+ 1)x/L)) , (63)

where N = 1, L = 10, αn and βn are uniform, random numbers between 0 and
5 · 10−3. The gravitational constant is set to G = 1, but cosmological expansion
is still turned off (a = 1). Figure 3 shows the evolution of these initial condi-
tions. Without quantum pressure, cuspy profiles form. They are characteristic of
N -Body CDM simulations. The quantum pressure term flattens these cusps. In
the following chapter, we will study the suppression of structures in FDM below
the characteristic Jeans scale in detail. For this example, the absence of the con-
vection term in the Hamilton-Jacobi equation leads to high-frequency oscillations
superposed with the expected large scale dynamics.
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Figure 3: Comparison of the numerical evolution of a constant O(1) density background with
O(10−3) density perturbations under the influence of gravity up to t = 1.25 in code units.

For more examples and possible interpretations of the Madelung equations
see (Tsekov 2009; Bohm 1952).

9Note while the superposition principle holds for the linear Schrödinger equation, the velocity
and density fields do not obey the superposition principle because of the nonlinearity introduced
by the Madelung transform. Therefore, even a superposition of plane waves with vanishing
velocity and constant density fields will of course lead to non-trivial velocity and density fields
reflecting wave interference.
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3
Eulerian Perturbation Theory

The goal of cosmological perturbation theory is to describe the departure of
matter evolution from the homogeneous Hubble expansion perturbatively. In
Eulerian perturbation theory (PT), one describes the nonlinear gravitational dy-
namics in terms of solutions of the linearised fluid equations in a fixed laboratory
frame. We will see that linear analysis predicts that all scales are unstable in
CDM models. This serves to explain the over-abundance of low mass halos and
cuspy dark matter halo profiles observed in numerical CDM simulations. FDM
can alleviate these problems because the quantum pressure term counteracts grav-
itational collapse below a non-zero Jeans scale. In the second part of this chapter,
we will introduce nonlinear Eulerian perturbation theory. The fundamental ob-
jects of nonlinear PT are the coupling kernels Fn and Gn. They encode how linear
modes couple in the full, nonlinear theory and therefore act as nonlinear transfer
functions. We will first present recursion relations that allow to compute the
kernels Fn and Gn in CDM following (Bernardeau et al. 2001). Afterwards, we
will develop a general framework for time-dependent PT based on the approach
suggested in (Li, Hui and Bryan 2018). We then use it to compute the kernels
F2, F3 and F4 in CDM and FDM.

3.1 Eulerian Linear Perturbation Theory

In the following, we assume δ � 1 and |v| � 1 for the fluctuation fields and
neglect higher-order perturbations of the form O(δ2,v · δ,v2).

3.1.1 CDM

In order to linearise the Euler-Poisson equations, we substitute the density
contrast into the comoving continuity equation (27) and use that the background
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density evolution is governed by

∂tρb(t) + 3H(t)ρb(t) = 0, (64)

to obtain
∂tδ + 1

a
∇ · ((1 + δ)v) = 0. (65)

Neglecting higher-order terms O(δ2,vδ,v2), we find the

Linearised Euler-Poisson Equations

∂tδ(x, t) = −1
a

∇ · v(x, t), (66)

∂tv(x, t) +Hv(x, t) = −1
a

∇φ(x, t), (67)

∆Φ(x, t) = 4πGa2ρb(t)δ(x, t). (68)

Using the fact that v can be decomposed into its divergence θ := ∇ · v and
its vorticity w := ∇ × v, we obtain

∂tw(x, t) = −1
a

w(x, t). (69)

Since a(t) > 0 ∀t, any initial vorticity decays away due to the expansion of the
universe. Note that this linear result will in general not hold true in the nonlinear
regime. In contrast, the velocity in FDM is derived as gradient of the phase and
therefore irrotational by definition. Next, we study the time evolution of linear
density perturbations. To this end, we assume that the time dependence of the
density contrast can be separated from its spatial dependence

δ(x, t) = D(t)δ(x, 0), (70)

where D(t) is called the linear growth factor. Its evolution is governed by the
linear growth equation

D̈ + 2HḊ − 4πGρbD = 0. (71)

Since Eq. (71) is a second-order ODE, there are two independent solutions, i.e.
D+(t) and D−(t). They respectively describe the time-evolution of growing and
decaying modes. Other common forms of this linear growth equation can be found
by parameterising the time dependence of the growth factor via the conformal
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time τ
D′′(τ) + H(τ)D′(τ) − 3

2Ωm(τ)H2(τ)D(τ) = 0, (72)

or via the scale factor a

D′′(a) + 1
a

(
3 + d lnH(a)

d ln a

)
D′(a) − 3

2
Ωm,0

a5
H2

0
H2(a)D(a) = 0, (73)

where we made use of the relation

Ωm(a)
Ωm,0

= 1
a3

H2
0

H2(a) . (74)

For an Einstein-de Sitter model with Ωm = 1 (EdS) at small a, the cosmological
equation reduces to

ȧ2

a2 = 8
3πGρba

2, (75)

and is solved by
a ∝ t2/3, 6πGρbt2 = 1. (76)

The linear growth equation (73) then becomes

D′′ + 3
2aD

′ = 3
2a2D, (77)

with the solutions
D+(a) = a, D−(a) = a− 3

2 . (78)

Note that the growing modes approximately grow with a on large scales even in
cosmologies where Ωm < 1 as shown in Fig. 4.

3.1.2 FDM

As in the CDM case, we substitute the density contrast into the comov-
ing continuity equation and linearise the Madelung equations (26) by neglecting
higher-order terms O(δ2,v · δ,v2) to obtain the

Linearised Madelung Equations

∂tδ(x, t) = −1
a

∇ · v, (79)

∂tv(x, t) +Hv(x, t) = −1
a

∇Φ(x, t) + ~2

4m2a3 ∆(∆δ), (80)

∆Φ = 4πGa2ρbδ. (81)
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Figure 4: Comparison of analytical solutions of growth equation in EdS or matter-dominated
universe (MDU) with solution in fiducial cosmology (FC) obtained by numerical integration of
Eq. (73). Growth factors are normalised to D±(a0) = 1 at a0 = 0.01.

Eliminating the velocity field yields the evolution of the density field δ

δ̈ + 2Hδ̇ = 4πGρbδ − ~2

4m2a4 ∆(∆δ). (82)

A Fourier transform then gives:

δ̈k + 2Hδ̇k −
(

4πGρb − ~2k4

4m2a4

)
δk = 0. (83)

Unlike in the CDM case, linear growth in FDM is scale-dependent because of
the quantum pressure term. Modes at different scales still evolve independently
because we linearised the Madelung equations. Mode coupling and the transfer
of power from large to small scales are a purely nonlinear phenomenon. Note
that the term in brackets ~2k4

4m2a4 contains the FDM sound speed c2
s,eff ≈ k2

4m2a2 in
the limit k

ma
< 1 10. For each mode k, Eq. (83) describes a harmonic oscillator

with time-dependent dampening H(t) and frequency

ω(k, t) =
√

~2k4

4m2a4 − 4πGρb
a3 . (85)

10A relativistic treatment of the effective sound speed in the gauge comoving with the time-
averaged axion fluid yields

c2
s,eff,full = k2/(4m2a2)

1 + k2/(4m2a2) . (84)
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Scale factor a m = 10−21 eV m = 10−22 eV m = 10−23 eV

0.01 70 22 7

1 221 70 22

Table 8: Comoving quantum Jeans scales kJ ∝ a
1
4m

1
2 for 3 different axion masses m and

redshifts in units h/Mpc. The respective Jeans wavelengths λJ range from 30 kpc/h to 900
kpc/h.

The condition ω = 0 defines the comoving quantum Jeans scale kJ as

kJ =
(

16πGm2ρba

~2

) 1
4

= 44.7 Mpc−1
(

6aΩm,0

0.3

) 1
4
 H0

70km
s

1
Mpc

m

10−22eV

 1
2

,

(86)

or equivalently the comoving quantum Jeans wavelength λJ as

λJ = 2π
λJ

=
(

~2π3

m2Gρba

) 1
4

= 141 kpc
(

6aΩm,0

0.3

)− 1
4
 H0

70km
s

1
Mpc

m

10−22eV

− 1
2

.

(87)

Table 8 lists a few examples of comoving Jeans scales for different FDM masses.
The Jeans scale describes a force balance between gravity and quantum pressure.
For k < kJ , i.e. scales larger than λJ , ω(k, t) becomes imaginary and we recover
a growing and a decaying mode just like for CDM. Perturbations on these scales
are unstable and will gravitationally collapse. For k > kJ , i.e. scales smaller
than λJ , the frequency ω(k, t) becomes real. Perturbations on small scales there-
fore undergo oscillations. Physically speaking, the quantum pressure counteracts
gravity and perturbations do not collapse under their own gravity. The comoving
Jeans wavelength decreases with time as λJ ∼ a− 1

4 which is why more small-scale
features can develop as the universe evolves.

As in the CDM case, we find an analytical solution of the linear FDM growth
equation (83) in the EdS case. To this end, we rewrite Eq. (83) in terms of the
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scale factor a

D′′(a) + 1
a

(
3 + d lnH

d ln a

)
D′(a) − 1

a2H(a)2

(
3
2

Ωm,0H
2
0

a3 − ~2k4

2m2a4

)
D(a) = 0.

(88)

Simplifying with Ωm,0 = 1 gives

D′′(a) + 3
2aD

′(a) −
(

3
2a2 − ~2k4

4m2a3H2
0

)
D(a) = 0. (89)

Following the convention in (Li, Hui and Bryan 2018), we further introduce the
conformal time η that is related to the standard conformal time τ via

η ≡ 2
√
a = H0τ, (90)

as well as the momentum scale b(k) as

b(k) = 2~k2

mH0
. (91)

With these definitions in place, we obtain

∂2
ηD(k, η) + 2

η
∂ηD(k, η) −

(
6
η2 − b(k)2

η4

)
D(k, η) = 0. (92)

The analytical solutions to Eq. (92) take the form

D±(k, η) = η− 1
2J∓5/2

(
b(k)
η

)
, (93)

where J∓5/2 are cylindrical Bessel functions of fractional order:

J−5/2 =
√

2
πz

(3 cos z
z2 + 3 sin z

z
− cos z

)
, (94)

J+5/2 =
√

2
πz

(3 sin z
z2 − 3 cos z

z
− sin z

)
. (95)

We recover the CDM solutions (78) in the limit of small arguments for the Bessel
functions:

J−5/2 →
√

2
π

3
z

5
2
, J5/2 →

√
2
π

z
5
2

15 . (96)
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This limit physically corresponds to the quantum pressure becoming small which
happens at late times, at large scales and for large masses. We can also study
the CDM limit of Eq. (92) directly. The ansatz D ∝ ηα solves Eq. (92) if the
coefficient α obeys

α+/− = −1
2 ±

√
25
4 − b(k)2

η2 . (97)

For vanishing quantum pressure, the exponents α+ = 2 and α− = 3 correspond
to the CDM solutions defined in Eq. (78). If b(k)2

η2 > 25
4 , that is, if we consider

scales smaller than the quantum Jeans wavelength, we obtain complex exponents
corresponding to growing and decaying oscillations of the density perturbations.
Figs. 5 and 6 show the growing and decaying solutions respectively.
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Figure 5: Growing modes D+(a) in CDM and D+(k, a) in FDM in fiducial cosmology obtained
by numerical integration of Eqs. (73) and (89) for a mass of m = 10−22 eV at three different
scales k. Growth factors are normalised to D+(a0) = 1 at a0 = 0.01.

The existence of a natural length scale in FDM can also be understood on
purely dimensional grounds. The most apparent scale in the SPS is the static
Compton wavelength λ = ~

mc
. It gives the wavelength of a photon whose energy

equals the axion mass. For an ultra-light axion with a mass of m ∼ 10−22 eV, the
Compton wavelength is at the order of 10−1 pc and therefore much smaller than
a typical galaxy. Therefore, we turn towards the de Broglie wavelength:

λdB = h

mv
= 1.92kpc

(
10−22eV
m

)(
10km

s
v

)
. (98)

It represents the wavelength of solutions of the Schrödinger equation. For galactic
velocities v with v ∼ 104 m

s , we find the astronomically relevant de Broglie
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Figure 6: Decaying modes D−(k, a) in CDM and FDM in fiducial cosmology obtained by
numerical integration of Eqs. (73) and (89) for a mass of m = 10−22 eV at three different scales
k. Growth factors are normalised to D−(a0) = 1 at a0 = 0.01.

wavelength λdB ∼ 1 kpc. Roughly speaking, the de Broglie wavelength can-
not exceed the virial radius r ∼ GM

v2 of an equilibrium self-gravitating system of
mass M 11. Thus,

r &
~2

m2
1

GM
. (99)

The Buckingham-Π theorem now ensures that Eq. (99) defines the unique length
scale that can be formed using the input parameters[

~
m

]
= L2

T
, [G] = L3

MT 2 , [M ] = M, [a] = 1. (100)

These are three dimensionful and one dimensionless input parameter expressed
in terms of the three fundamental dimensions time T , length L and mass M .
The Buckingham-Π theorem now states that there is no dimensionless product
of rational powers of the dimensionful input parameters. Therefore, any length
scale of interest λ must be of the form

λ = f(a) ~
2

m2
1

GM
. (101)

If we now assume that M is the mass of a sphere of radius λ with density ρb, we
11This statement can be made rigorous by showing that the SPS admits a stable ground

state solution that is the long-term attractor of any FDM system. For a proof, see for instance
(Chavanis 2011).
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find

λ =
(
f(a) ~

2

m2
1
Gρb

) 1
4

, (102)

which is, up to factors of order unity, the expression for the comoving quantum
Jeans length defined in Eq. (87).

To sum up, the key difference between CDM and FDM in linear perturbation
theory is the existence of a unique length scale in FDM. Whereas all scales are
gravitationally unstable in CDM, the perturbations below the quantum Jeans
scale are stabilised in FDM. Nevertheless, nonlinear perturbation theory may
alter these conclusions since the quantum Jeans scale is a concept only valid
within linear perturbation theory. This can be seen by taking the first few terms
of the Taylor expansion of the quantum pressure Eq. (24):

2m2

~2 ∆QP = −∆
∆√

ρ
√
ρ

= ∆
(

−∆δ + 1
4∆δ2 + 1

2δ∆δ + O(δ2)
)

(103)

The linear contribution −∆2δ counteracts gravity since they have opposite signs
in Eq. (82). However, the quadratic terms acts in the same direction as gravity
and could therefore potentially enhance gravitational collapse (Li, Hui and Bryan
2018). This is related to the fact that the interference of waves can lead to
structures that are smaller than their wavelength. As a matter of fact, halos in
FDM simulations often have large density fluctuations below the Jeans scale. In
order to estimate the effect of nonlinearities on cosmological structure formation,
we develop nonlinear perturbation theory for CDM and FDM in the next section.

3.2 Eulerian Non-Linear Perturbation Theory

We will now consider the evolution of CDM and FDM beyond the linear ap-
proximation using Eulerian Non-Linear Perturbation Theory. The fundamental
assumption of Eulerian perturbation theory is that we can expand the density
contrast and velocity fields in terms of the solutions δ(1) and v(1) of the linearised
equations (66) and (79):

δ(x, a) =
∞∑
n=1

δ(n)(x, a), θ(x, a) =
∞∑
n=1

θ(n)(x, a), (104)

where θ = ∇ · v and the nth-order fluctuation fields δ(n) and θ(n) are proportional
to the nth power of the linear fluctuation fields:

δ(n) ∼
(
δ(1)

)n
, θ(n) ∼

(
θ(1)

)n
. (105)
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In addition, we have ∂aδ(1) = θ(1) from the linearised continuity equation. There-
fore, both the velocity and the density field are fully determined by the linear
density fluctuations. The goal of perturbation theory is now to describe how
linear modes couple in the full, nonlinear theory. To this end, we introduce the
nonlinear coupling kernels Fn and Gn. They describe how the nth-order fluctu-
ation fields are sourced by the linear fluctuation fields via

δ(n)(k) =
∫ d3q1

(2π)3 . . .
∫ d3qn

(2π)3 δD(k − q1,...,n)

× Fn(q1, . . . , qn)δ(1)(q1) . . . δ(1)(qn), (106)

θ(n)(k) =
∫ d3q1

(2π)3 . . .
∫ d3qn

(2π)3 δD(k − q1,...,n)

×Gn(q1, . . . , qn)δ(1)(q1) . . . δ(1)(qn), (107)

where Fn and Gn are homogeneous functions of the wave vectors q1, . . . , qn with
degree zero and q1,...,n ≡ q1 + . . . + qn. Note that in the following, we employ
a convention where integration over momenta ki,kj with equal indices i, j is
understood, e.g.:

δD(k − k12)β(k1,k2)θ(k1)θ(k2) ≡∫ d3k1d3k2

(2π)6 δD(k − k12)β(k1,k2)θ(k1)θ(k2).
(108)

With this convention in place, Eqs. (106) and (107) take the form:

δ(n)(k) = δD(k − q1,...,n)Fn(q1, . . . , qn)δ(1)(q1) . . . δ(1)(qn), (109)
θ(n)(k) = δD(k − q1,...,n)Gn(q1, . . . , qn)δ(1)(q1) . . . δ(1)(qn). (110)

3.2.1 Goroff’s Method

We start by reminding the reader of the Euler-Poisson equations expressed in
terms of the conformal time τ :

∂τδ + ∇ · ((1 + δ)v) = 0, (111)
∂τv + Hv + (v · ∇)v + ∇φ = 0, (112)

∆φ− 3
2Ωm,0H2δ = 0. (113)

We characterise the velocity field v only by its divergence θ and neglect vorticity
degrees of freedom. This is a valid assumption as long as multi-streaming and
shocks do not occur. After taking the divergence of Eq. (112) and Fourier
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transforming, we obtain

∂τδ(k, τ) + θ(k, τ) = −δD(k − k12)α(k1,k2)θ(k1, τ)δ(k2, τ), (114)

as well as the Euler equation

∂τθ(k, τ) + H(τ)θ(k, τ) + 3
2Ωm,0H2(τ)δ(k, τ)

= −δD(k − k12)β(k1,k2)θ(k1, τ)θ(k2, τ),
(115)

where the following mode-coupling functions were defined:

α(k1,k2) ≡


k12·k1
k2

1
, if k1 6= 0,

0, otherwise,
(116)

β(k1,k2) ≡


k2

12(k1·k2)
2k2

1k
2
2
, if k1 6= 0 and k2 6= 0,

0, otherwise.
(117)

We now consider an EdS universe where a(τ) ∝ τ 2 and H(τ) = 2
τ
. In this

situation, we can bring the system of equations (114) and (115) into a form which
is homogeneous in the scale factor. It can then be solved using the perturbative
expansion

δ(k, τ) =
∞∑
n=1

an(τ)δn(k), (118)

θ(k, τ) = −H(τ)
∞∑
n=1

an(τ)θn(k). (119)

With the help of this expansion, one can derive recursion relations for the mode
coupling kernels:

Fn(q1, . . . , qn) =
n−1∑
m=1

Gn(q1, . . . , qm)
(2n+ 3)(n− 1)((2n+ 1)α(k1,k2)

× Fn−m(qm+1, . . . , qn)
+ 2β(k1,k2)Gn−m(qm+1, . . . , qn)),

Gn(q1, . . . , qn) =
n−1∑
m=1

Gn(q1, . . . , qm)
(2n+ 3)(n− 1)(3α(k1,k2)

× Fn−m(qm+1, . . . , qn)
+ 2nβ(k1,k2)Gn−m(qm+1, . . . , qn)),

(120)
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where k1 = q1 + . . .+ qm, k2 = qm+1 + . . .+ qn, k = k1 + k2, and F1 = G1 = 1.
This method was developed in a series of papers (Fry 1984; Goroff et al. 1986; Jain
and Bertschinger 1993). Following the convention in (Reimberg 2016), we will
refer to this method of developing perturbative solutions to the Euler equations
in an EdS universe as Goroff’s method because of (Goroff et al. 1986). We further
introduce the symmetrised recursion kernels

F (s)
n (q1, . . . , qn) = 1

n!
∑

π∈Π(n)
Fn(qπ(1), . . . , qπ(n)), (121)

G(s)
n (q1, . . . , qn) = 1

n!
∑

π∈Π(n)
Gn(qπ(1), . . . , qπ(n)). (122)

For instance, the symmetrised kernel F (s)
2 reads:

F
(s)
2 (q1, q2) = 5

7 + 1
2

q1 · q2

q1q2

(
q1

q2
+ q2

q1

)
+ 2

7
(q1 · q2)2

q2
1q

2
2

. (123)

In a general cosmology, the PT expansion is more complicated because the solu-
tions at each order become non-separable functions of τ and k. In particular, the
growing mode at order n does not scale as Dn

1 (τ). Yet, it is possible to show that
a simple approximation to the equations of motion for general Ωm and ΩΛ leads
to separable solutions of arbitrary order in PT and the same recursion relations
as in the EdS case. All the information of the PT solutions on the cosmological
parameters Ωm and ΩΛ is then encoded in the linear growth factor (Bernardeau
et al. 2001).

3.2.2 Scoccimarro’s Method

The first attempt at using cosmological perturbation theory for the Schrödinger
equation in the fluid picture can be found in Szapudi and Kaiser (2003). They
derive the above recursion kernels in the correspondence limit of the Schrödinger
equation (~ → 0). This has the advantage that the PT remains valid even after
shell crossing because the velocity field is irrotational by definition. However,
including the quantum pressure for ~ 6= 0 poses additional difficulties. In a CDM
EdS universe, we have seen that it is possible to obtain algebraic recursion rela-
tions for the coupling kernels. This is because the Euler-Poisson system becomes
homogeneous in the scaling factor a in this case. In FDM, the quantum pressure
term has a different dependence on the scale factor a and the coupling kernels end
up being time time-dependent, even in an EdS universe. Therefore, we were not
able to obtain recursion relations for the couplings kernels in FDM. Just like for
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a general cosmology in CDM, the solutions at each order become non-separable
functions of time and scale. A method to obtain the PT kernels in this case
is described in a series of papers (Scoccimarro 1998; Scoccimarro 2006). They
develop a framework for time-dependent PT using Feynman diagrams. In the fol-
lowing, we will refer to their method as Scoccimarro’s method. Li, Hui and Bryan
(2018) use Scoccimarro’s method for computing the kernels F2 and F3 in FDM.
One treats the nonlinear terms in the Madelung equations as inhomogeneity g(η)
while solving the growth equation (92)

∂2
ηD(k, η) + 2

η
∂ηD(k, η) −

(
6
η2 − b(k)2

η4

)
D(k, η) = g(η). (124)

We end up with an integral equation that can be represented as a Dyson series.
The Dyson series allows for a diagrammatic representation and can be recursively
solved up to a given order in perturbation theory. In the following section, we
will retrace the steps taken by Li, Hui and Bryan (2018) to apply Scoccimarro’s
method to FDM. We begin our discussion in a more general setting before we
specialise to FDM and CDM.

We start with a system of two coupled equations of the form

∂τδ = −∇ · ((1 + δ)v) , (125)
∂τθ = f(θ, δ), (126)

where f is a well-behaved functions that is allowed to depend on θ and δ and their
spatial derivatives. Hence, Eq. (126) include both the ideal fluid equations with
pressure if we neglect the vorticity degrees of freedom as well as the Madelung
equations. Further, we introduce the two-component vector

Ψ = [δ θ]> , (127)

such that the density and velocity fields can be treated on equal footing. We now
Taylor expand Eq. (126) in terms of δ and θ and then Fourier transform it:

∂ηΨa(k) + Ωab(k, η)Ψb(k) =
∞∑
n=2

δD(k − k1...n)Γna,i1...in(k,k1, . . . ,kn, η)Ψi1(k1, η) × . . .× Ψin(kn, η).
(128)

where we introduced the time- and scale-dependent mode-coupling matrices Ωab

and Γa,i1,...,in for the indices a, b, i1, . . . , in ∈ {1, 2} and we employ the Einstein
sum convention. The matrix Ωab encodes the linearised fluctuations, whereas the
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matrices Γa,i1...in encode all nonlinearities. The meaning of the indices can be
easily understood: The index a tells us whether we are looking at a contribution
to the density contrast δ or the velocity divergence θ. The indices i tells us which
fields couple to one another. The continuity equation Eq. (125) gives Ω11 = 0
and Ω12 = 1. We can therefore substitute

Ψ2(k, η) = −∂ηΨ1(k, η)

+
∞∑
n=2

δD(k − k1...n)Γn1,i1...in(k,k1, . . . ,kn, η)Ψi1(k1, η) × . . .× Ψin(kn, η)
(129)

into Eq. (126) for a = 2 to obtain

∂2
ηΨ1 + Ω22∂ηΨ1 − Ω21Ψ1 = g(k, η), (130)

where we omitted time and momentum variables and the inhomogeneity g(k, η)
is defined as

g(k, η) ≡
∞∑
n=2

δD(k − k1...n)[
∂η
[
Γn1,i1...inΨi1(k1, η) × . . .× Ψin(kn, η)

]
+ (Ω22 − 1)Γn2,i1...inΨi1(k1, η) × . . .× Ψin(kn, η)

]
.

(131)

Linearising Eq. (130) gives the homogeneous, linear second-order ODE

∂2
ηΨ

(1)
1 + Ω22∂ηΨ(1)

1 − Ω21Ψ(1)
1 = 0, (132)

whose solutions are the linear growth factors D+ and D− if we make the ansatz
Ψ(1)

1 (k, η) = δ(k, η0)D(η, η0). A particular solution of an inhomogeneous second-
order ODE can be found by the convolution of the inhomogeneity g(k, a) with
the Green’s function Gk(s, a)

u(k, η) =
∫ η

η0
ds g(k, s)Gk(s, η), (133)

where the Green’s function Gk(s, a) of the ODE is given by a combination of two
linearly independent solutions, i.e. D+ and D−, of the homogeneous equation

G(s, η) = D−(s)D+(η) −D−(η)D+(s)
D−(s)∂sD+(s) − ∂sD−(s)D+(s) . (134)
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The Green’s function has the following properties:

Gk(η, η) = 0, ∂ηGk(s, η)|s=η = 1, ∂sGk(s, η)|s=η = −1. (135)

Now comes the crucial idea of the derivation of the coupling kernels: If we write
down the convolution in Eq. (133) for the inhomogeneity defined in Eq. (131),
we obtain an integral equation for Ψa. This integral equation can be brought
into the form of Eqs. (106) and (107). Finding the coupling kernels Fi and Gi

is then simply a matter of comparing integrands. Pursuing this idea, we express
the solution Ψ1 of the full theory as sum of the homogeneous solution Ψ(1)

1 and a
particular solution

Ψ1(k, η) = Ψ(1)
1 (k, η) +

∫ η

η0
ds g(k, s)Gk(s, η). (136)

We now parameterise the inhomogeneous solution in terms of the vertex couplings
C

(n)
a,i1...in(k,k1, . . . ,kn, s, η) and write

Ψa(k, η) = Ψ(1)
a (k, η) +

∞∑
n=2

δD(k − k1...n)

×
∫ η

η0
dsC(n)

a,i1...in(k,k1, . . . ,kn, s, η)Ψi1(k1, s) × . . .× Ψin(kn, s).
(137)

The vertex couplings for Ψ1 can be immediately derived from Eq. (131) by partial
integration of the derivative term ∂s

[
Γ1,i1...inΨi1(k1, s) × . . . × Ψin(kn, s)

]
using

Gk(η, η) = 0:

C
(n)
1,i1,...,in(k,k1, . . . ,kn, s, η) =

− Γn1,i1...in(k,k1, . . . ,kn, s)∂sGk(s, η)
+ [Ω22(k,k1, . . . ,kn, s) − 1] Γn2,i1...in(k,k1, . . . ,kn, s)Gk(s, η).

(138)

The vertex couplings C(n) owe their name to the diagrammatic representa-
tion of Eq. (137) shown in Fig. 7. In the following, we will make use of this
diagrammatic language to compute the higher-order coupling kernels. Equation
(137) can be used to obtain the perturbative solution iteratively: We substitute
Ψ = Ψ(1) + O(δ2) into the RHS of Eq. (137) which gives an equation whose solu-
tion is Ψ = Ψ(1) + Ψ(2) + O(δ3). Substituting this expression back into the RHS
of Eq. (137) gives an equation whose solution is Ψ = Ψ(1) + Ψ(2) + Ψ(3) + O(δ4)
and so on. In the following, we will give expressions for Ψa(k, η) up to quartic
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Ψa(k, η) = Ψ(1)
a (k, η) +

k

k1

k2C
(2)
abc

Ψb

Ψc

+
k

k1

k2

k3

C
(3)
abcd

Ψb

Ψc

Ψd

+ . . . .

Figure 7: Diagrammatic representation of Eq. (137) in terms of trees. Outgoing momentum
arrows express momentum integrations. The Dirac-Delta functions enforce momentum conser-
vation at the vertices and we employ the Einstein sum convention for repeated indices. The
depth of the tree, i.e. 1, denotes the number of time integrations.

order in order to compute the kernels F2, F3 and F4:

Ψ(2)
a (k, η) =+δD(k − k12)

∫ η

η0
dsC(2)

abc(k,k1,k2, s, η)

×Ψ(1)
b (k1, s)Ψ(1)

c (k2, s),

Ψ(3)
a (k, η) =+δD(k − k12)

∫ η

η0
dsC(2)

abc(k,k1,k2, s, η)

×
(
Ψ(1)
b (k1, s)Ψ(2)

c (k2, s)

+ Ψ(2)
b (k1, s)Ψ(1)

c (k2, s)
)

+δD(k − k123)
∫ η

η0
dsC(3)

abcd(k,k1,k2,k3, s, η)

×Ψ(1)
b (k1, s)Ψ(1)

c (k2, s)Ψ(1)
d (k3, s),

Ψ(4)
a (k, η) =+δD(k − k12)

∫ η

η0
dsC(2)

abc(k,k1,k2, s, η)

×
(
Ψ(2)
b (k1, s)Ψ(2)

c (k2, s)

+ Ψ(1)
b (k1, s)Ψ(3)

c (k2, s)
+ Ψ(3)

b (k1, s)Ψ(1)
c (k2, s)

)
+δD(k − k123)

∫ η

η0
dsC(3)

abcd(k,k1,k2,k3, s, η)

×
(
Ψ(2)
b (k1, s)Ψ(1)

c (k2, s)Ψ(1)
d (k3, s)

+ Ψ(1)
b (k1, s)Ψ(2)

c (k2, s)Ψ(1)
d (k3, s)

+ Ψ(1)
b (k1, s)Ψ(1)

c (k2, s)Ψ(2)
d (k3, s)

)
+δD(k − k1234)

∫ η

η0
dsC(4)

abcde(k,k1,k2,k3,k4, s, η)

×Ψ(1)
b (k1, s)Ψ(1)

c (k2, s)Ψ(1)
d (k3, s)Ψ(1)

e (k4, s).

(139)
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k

k1

k2

C
(2)
abc

fb

fc

Figure 8: Diagrammatic representation of the coupling kernels F2 and G2. There is one free
index a that describes the density coupling kernel F2(k,k1,k2) for a = 1 and the velocity
coupling kernel G2(k,k1,k2) for a = 2. The tree has depth 1 and therefore requires a single
time integration.

We express Eq. (139) in terms of the linear density fluctuations only. They are
related to the linear velocity divergence fluctuations via

Ψ(1)
1 (k, η) = Dk(η)Ψ(1)

1 (k, η0), Ψ(1)
2 (k, η) = −∂ηDk(η)Ψ(1)

1 (k, η0) (140)

We therefore define the two-component vector f that relates the linear density
and velocity divergence fluctuations at time s with the linear density fluctuations
at time η:

f(k, s, η) =
[
Dk(s)
Dk(η) − ∂sDk(s)

Dk(η)

]>

(141)

With this definition in place we can rewrite Ψ(2)
a (k, η) as

Ψ(2)
a (k, η) = δD(k − k12)δ(k1, η)δ(k2, η)

×
∫ η

η0
dsC(2)

abc(k,k1,k2, s, η)fb(k1, s, η)fc(k2, s, η)
(142)

Comparing this expression to the definition of Fn in Eq. (106), we can finally
read off the coupling kernels. They can be expressed diagrammatically as shown
in Fig. 8 or explicitly written as:

Second-order Time-dependent PT Kernels F2 and G2

F2(k1,k2, η) =
∫ η

η0
dsC(2)

1bc(k12,k1,k2, s, η)fb(k1, s, η)fc(k2, s, η), (143)

G2(k1,k2, η) =
∫ η

η0
dsC(2)

2bc(k12,k1,k2, s, η)fb(k1, s, η)fc(k2, s, η). (144)

Note that all the kernels derived in this section have yet to be symmetrised

Page 34



3.2 Eulerian Non-Linear Perturbation Theory 3 PT

w.r.t. exchange of momenta. We now proceed by deriving the kernels at third
and fourth order in diagrammatic representation.

k

k1

k2

k3

C
(2)
abc

fb

C
(2)
cde

fd

fe

k

k1

k2

k3

C
(3)
abcd

fb

fc

fd

Figure 9: Diagrammatic representation of contributions to PT kernels F3 and G3. The left
diagrams describes two contributions with the permutation b ↔ c and corresponds to the Eq.
(145). The depth of the tree is 2. Accordingly it requires two time integrations. The right
diagrams corresponds to the expression Eq. (146).

k

k1

k2

k3

k4

C
(4)
abcde

fb

fc

fd

fe

Figure 10: Diagrammatic representation of contributions to PT kernels F4 and G4 involving
only the fourth-order vertex coupling C(4).
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(2)
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ff
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Figure 11: Diagrammatic representation of contributions to PT kernels F4 and G4 involving
only the second-order vertex coupling C(2). There is one additional permutation b ↔ c for the
left diagram as well as three additional permutations b ↔ c and d ↔ e for the diagram on the
right.

k
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C
(3)
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ff
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k34
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(3)
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(2)
bef

fc
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fe

ff

Figure 12: Diagrammatic representation of contributions to PT kernels F4 and G4 involving
both the second- and third-order vertex couplings C(2) and C(3). There is one additional
permutation b ↔ c for the left diagram and two additional permutations for b ↔ c ↔ d for the
right diagram.

At third order, the diagrammatic representation of the coupling kernels F3

and G3 is given by the two types of diagrams shown in Fig. 9. Explicitly, we find
the
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Third-order Time-dependent PT Kernels F3 and G3

The time-dependent coupling kernels F3 and G3 in FDM are given by
F FDM

3 = I
(3)
1 + J

(3)
1 and GFDM

3 = I
(3)
2 + J

(3)
2 with

I(3)
a =

( ∫ η

η0
dsC(2)

abc(k,k1,k23, s, η) × fb(k1, s, η) (145)

×
∫ s

η0
ds1C

(2)
cde(k23,k2,k3, s1, s)fd(k2, s1, s)fe(k3, s1, s)

)
+

(∫ η

η0
dsC(2)

abc(k,k1,k23, s, η) × fc(k1, s, η)

×
∫ s

η0
ds1 C

(2)
bde(k23,k2,k3, s1, s)fd(k2, s1, s)fe(k3, s1, s)

)
,

J (3)
a =

∫ η

η0
dsC(3)

abcd(k,k1,k2,k3, s, η) (146)

×fb(k1, s, η)fc(k2, s, η)fd(k3, s, η).

Finally, at fourth order, we find the diagrams shown in figures 10, 11 and
12. This concludes our general discussion of time-dependent perturbation theory
using Scoccimarro’s method. Before we move on to the FDM case, we briefly
review the steps we took to derive the PT kernels:

5 Steps Towards Time-dependent PT

Step 1: Taylor expand fluid equations w.r.t δ and θ and Fourier transform;

Step 2: Derive mode coupling matrices Ωab and Γai1,...,in ;

Step 3: Derive Green’s function for second-order growth equation;

Step 4: Use Eq. (138) to compute the vertex couplings C(n);

Step 5: (Optional) Symmetrise the kernels Fn and Gn w.r.t. exchange of
momenta.

3.2.3 FDM for EdS Cosmology

We can now apply the time-dependent perturbation theory framework de-
veloped in the last section to the FDM case. As in the CDM case, we start by

Page 37



3.2 Eulerian Non-Linear Perturbation Theory 3 PT

reviewing the Madelung equations (26) in terms of the conformal time τ

∂τδ + ∇ · ((1 + δ)v) = 0, (147)

∂τv + Hv + (v · ∇)v + ∇φ = − ~2

2m2a2 ∇


(
∆

√
1 + δ

)
√

1 + δ

 , (148)

∆φ− 3
2Ωm,0H2δ = 0. (149)

In the next step, we Fourier transform the Madelung equations. The Fourier
transform of the quantum pressure term is computed by the Taylor expansion
up to fourth order using Mathematica (Wolfram Research 2021). We obtain the
same continuity equation as in the CDM case

∂τδ(k) + θ(k) = −δD(k − k12)k · k2

k2
2
δ(k1)θ(k2), (150)

as well as the Euler equation with quantum pressure corrections

∂τθ(k) + Hθ(k) + 3
2Ωm,0H2δ(k) − k4

4a2m2 δ(k) =

− δD(k − k12)
(

1
2k

2 k1 · k2

k2
1k

2
2
θ(k1)θ(k2)

)

− δD(k − k12)δ(k1)δ(k2) k4

16a2m2

×
(

1 +
∑2
i k

2
i

k2

)

+ δD(k − k123)δ(k1)δ(k2)δ(k3) k4

32a2m2

×
(

1 +
∑3
i k

2
i

k2 +
∑3
i,j,i<j k2

ij

3k2

)

− δD(k − k1234)δ(k1)δ(k2)δ(k3)δ(k4) 3k4

128a2m2

×
(

1 + 2
3

∑4
i k

2
i

k2 + 1
3

∑4
i,j,i<j k2

ij

k2

)
+ O(δ5),

(151)

where we omitted the time dependence of all quantities and integrations over
momenta with repeated indices are again understood. Comparing equations (150)
and (151) to Eq. (128), we can now determine the mode coupling matrices: The
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linear mode coupling matrix Ωab reads

Ω(k) =

 0 1

6
η2 − b(k)2

η4
2
η

 , (152)

where we remind the reader that b(k) is defined as

b(k) = 2k2~

mH0Ω
1
2
m

, (153)

and encodes the characteristic scale of the FDM system. Ω21 vanishes when
k equals the comoving quantum Jeans scale kJ . We compute the non-linear
mode coupling matrices Γa,i1,...,in up to n = 4: At second order, the matrices
Γa,i1,i2 include the nonlinear contribution from the convection term as well as the
second-order mode coupling from the quantum pressure term:

Γ112(k,k1,k2) = −α(k,k2),
Γ121(k,k1,k2) = −α(k,k1),

Γ211(k,k1,k2) = −b(k)2

η4
1
4

(
1 +

∑2
i k

2
i

k2

)
,

Γ222(k,k1,k2) = −β(k,k1,k2),

(154)

where α(k,k1) and β(k,k1,k2) were defined in Eqs. (116) and (117), and all
other components vanish. All higher-order contributions to Γa,i1...in stem solely
from the quantum pressure term and therefore represent self-interactions of the
density field:

Γ2111(k,k1,k2,k3) = +b(k)2

η4
1
8

(
1 +

∑3
i k

2
i

k2 +
∑3
i,j,i<j k2

ij

3k2

)
, (155)

Γ21111(k,k1,k2,k3,k4) = −b(k)2

η4
3
32

(
1 + 2

3

∑4
i k

2
i

k2 + 1
3

∑4
i,j,i<j k2

ij

k2

)
, (156)

and all other contributions at third and fourth order vanish. The linear growth
equation in FDM for a general source g(k, a) reads

u′′(k, a) + 2H(a)u′(k, a) +
( ~2k4

2m2a4 − 4πGρb(a)
)
u(k, a) = g(k, a). (157)
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Using the analytical growth factors D+ and D− in an EdS universe derived in
Eq. (93), we find the Green’s function

Gk(s, η) = πs3/2

2η1/2

×
[
J5/2

(
b(k)
s

)
J−5/2

(
b(k)
η

)
− J5/2

(
b(k)
η

)
J−5/2

(
b(k)
s

)]
.

(158)

Using equation (138), we find the vertex couplings

C
(2)
1bc(k,k1,k2, s, η) = − Γ1bc(k,k1,k2, s)∂sGk(s, η)

−
(
Γ2bc(k,k1,k2, s) − 2

s
Γ1bc(k,k1,k2, s)

)
Gk(s, η).

(159)

at second order as well as

C
(3)
1111(k,k1,k2,k3, s, η) = −Γ2111(k,k1,k2,k3)Gk(s, η), (160)

C
(4)
11111(k,k1,k2,k3,k4, s, η) = −Γ21111(k,k1,k2,k3,k4)Gk(s, η), (161)

at third and fourth order where all other vertex couplings vanish. This is be-
cause above order two in FDM there are only self-interactions of the density field
stemming from the Taylor expansion of the quantum pressure term. This sim-
plifies the computation and the symmetrisation of the kernels F FDM

3 and F FDM
4

significantly. A more detailed discussion can be found in appendix A.2. Since
γabc(k,k1,k2, s, η) is symmetric w.r.t. exchange of k1 and k2, C(2)

1bc(k,k1,k2, s, η)
inherits this property. As a consequence F FDM

2 as given by Eq. (143) is already
symmetric under exchange of k1 and k2.

Fig. 13 shows a comparison of the symmetrised kernels F (s)
2 in FDM and

CDM. As expected, the two agree on large large scales. Moreover, the FDM
kernel is suppressed and shows oscillations on small scales. At the same time,
we also observe that FDM enhances mode coupling for orthogonal configurations
even on small scales. This is in agreement with our observation that the next-
to-leading order term in the Taylor expansion of the quantum pressure term can
potentially enhance gravitational collapse.

3.2.4 CDM for General Cosmology

In this section, we compare the PT kernels obtained with the help of the
recursion relations in Eq. (120) with the time-dependent PT for EdS and the
fiducial cosmology. The time-dependent coupling kernels in CDM for a general
cosmology immediately follow from the FDM case in the limit b(k) → 0. The
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Figure 13: Comparison of symmetrised PT kernels F (s)
2 (k1,k2) in FDM and CDM in EdS.

The figure shows the quantity sgn(F2) log10(|F2|) for different scales and angular configurations.
The kernel in FDM was obtained by numerical integration using the analytical Green’s function
in Eq. (158).

linear mode coupling matrix Ωab reads

Ω(k) =

 0 1

6
η2

2
η

 . (162)

The matrices Γa,i1,i2 are given as

Γ112(k,k1,k2) = −α(k,k2),
Γ121(k,k1,k2) = −α(k,k1),
Γ211(k,k1,k2) = 0,
Γ222(k,k1,k2) = −β(k,k1,k2),

(163)
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and all higher-order mode-coupling matrices vanish. Consequently, the only non-
zero vertex coupling is

C
(2)
1bc(k,k1,k2, s, η) = − Γ1bc(k,k1,k2, s)∂sGk(s, η)

−
(
Γ2bc(k,k1,k2, s) − 2

s
Γ1bc(k,k1,k2, s)

)
Gk(s, η).

(164)

We can compute the Green’s function in Eq. (134) using the analytical growth
factors in an EdS universe:

D+(η) = a(η) = η2

4 , D−(η) = a− 3
2 (η) =

(
η2

4

)− 3
2

, (165)

leading to

Gk(s, η) = 1
5

(
η2

s
− s4

η3

)
. (166)

Alternatively, we can numerically find two linearly independent solutions to the
CDM growth equation (73). The advantage of the EdS case is that can we
analytically integrate the time-dependent expressions PT kernels. 12 Integration
of Eq. (143) gives for example:

F
(s)
2,td(k1,k2) = 25a 7

2 − 21a 5
2a0 − 4(a0)

7
2

70a 7
2

(2 + α(k1,k2) + α(k2,k1))

+ 4(5a 7
2 − 7a 5

2a0 + 2(a0)
7
2 )

70a 7
2

β(k1,k2).
(167)

This expression differs from the kernel F (s)
2 in Eq. (123) derived using the recur-

sion relations according to Goroff’s method:

F
(s)
2 (k1,k2) = 5

7 + 5
14 (α(k1,k2) + α(k2,k1)) + 2

7β(k1,k2). (168)

In fact the two only agree in the limit a0 → 0. The mismatch between the two
kernels at a = 1 is shown in Fig. 14. Fig. 14 also indicates that we should
use the CDM PT kernels obtained using time-dependent PT for comparison with
the FDM kernels since they do not exhibit any mismatch (besides numerical
errors) on large scales. Computing the CDM kernel numerically for the fiducial
cosmology reveals a much more significant discrepancy. As Fig. 15 shows, the
time-dependent PT kernels in an EdS and the fiducial cosmology disagree by
more than 30%. This could be because the time-dependent PT kernels carry

12A Mathematica notebook performing these computations is available on https://git-
hub.com/KunkelAlexander/fdm-eulerpt.
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Figure 14: Comparison of symmetrised PT kernels F (s)
2 (k1,k2) obtained via recursion rela-

tions and time-dependent PT for EdS. The three plots on the left show the FDM kernel from
Eq. (143), the CDM kernel obtained using the recursion relations in Eq. (168) and the CDM
kernel obtained using time-dependent PT (CDMtd) in Eq. (167). The three plots on the right
indicate the relative mismatch between the different kernels. The time-dependent kernels were
integrated from a0 = 0.01 to a = 1.

more cosmology dependence than the time-independent kernels.

3.2.5 FDM for General Cosmology

One could in theory compute the time-dependent PT kernels in FDM for a
general cosmology by numerically integrating two independent solutions to the
linear growth equation (89). In practice, we were not able to do so. The reason
is that the solutions to Eq. (89) are oscillating below the Jeans scale, that is, for
large momenta. Whereas in the CDM case, the two independent solutions D+ and
D− are distinguished by their growing and decaying behaviour, we could not find
a similar criterion for distinguishing the FDM solutions in the oscillating regime.
In CDM, we obtain the two independent solutions by integrating numerically from
a0 to a for the growing mode and from a to a0 for the decaying mode. In this
way, the numerical solution is insensitive to initial conditions. This is because
when integrating forward in time, i.e. from a0 to a, any decaying component
present in the initial condition quickly decays away. Likewise, when integrating
backward in time, any growing component in the initial conditions quickly decays
away. The naive approach of integrating forward in time and to use linearly
independent initial conditions, for instance D(a = a0) = 0, D′(a = a0) = 1 for
one solution and D(a = a0) = 1, D′(a = a0) = 0 for the other solution, does not
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Figure 15: Comparison between time-dependent symmetrised PT kernels F (s)
2 (k1,k2) in EdS

and the fiducial cosmology. The relative mismatch plot on the right indicates a mismatch of
∼ 20% across the entire range of scales and angles.

work. This is because integration errors in the form of a growing mode quickly
dominate the numerical solution. In FDM, the oscillating regime for a < aosc

complicates the numerical integration. In order to capture the CDM growing and
decaying mode correctly, one needs to integrate one mode forward and the other
mode backward in time. However, if a0 < aosc the forward integration starts
in the oscillating regime where the solution is sensitive to initial conditions. In
order to obtain orthogonal solutions in the oscillating regime, we would need to
prescribe orthogonal initial conditions at a single time a0. Yet, in doing so one
does not recover the correct decaying mode if the solution starts growing/decaying
somewhere in the integration interval, that is for aosc ∈ [a0, a]. A more detailed
analysis of linear growth in FDM can be found in appendix A.3.
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4
A Weak Lensing View on FDM

In this section, we give a weak lensing view on FDM. Weak lensing surveys
such as Euclid measure the galaxy shear power spectrum and allow to infer the
shape of the matter power spectrum Pδ thereby giving constraints on cosmological
parameters such as the axion mass. They can increase sensitivity significantly
compared to galaxy redshift surveys alone. This has the following reason: If one
measures the galaxy power spectrum Pgal(k, z) = b2P (k, z), the survey is biased
by the galaxy bias b. The galaxy bias is measured by the galaxy redshift survey
itself by letting b be a free parameter. By varying it, one can compensate in a
scale-independent manner for suppression of power. Since the preferred values of
b and therefore the normalisation of the power spectrum are different for axion
cosmologies than for ΛCDM, the constraining power of galaxy surveys is reduced.
In contrast, gravitational lensing provides an unbiased tracer of dark matter and
therefore enables the derivation of stronger constraints on the mass parameter in
FDM. In previous weak lensing studies on FDM, Marsh et al. (2011) analysed
whether adding a small fraction of axions of mass in the rangem = 10−29 eV would
be detectable via the convergence power spectrum. For modelling nonlinearities,
they neglected the quantum pressure entirely and used the CDM halofit model
inside CAMB. More recently, Dentler et al. (2021) combine CMB Planck data
with shear correlation data from the Dark Energy Survey year 1 to find a 95%
C.L. lower limit m > 10−23 eV. They model the nonlinear FDM spectra using the
adapted halo model HMCODE.

In contrast, we will compute the power spectrum, bispectrum and trispec-
trum using time-dependent nonlinear Eulerian perturbation in FDM and CDM
to derive the corresponding lensing spectra for a Euclid-like lensing survey. We
estimate the attainable signal-to-noise ratios as well as the χ2-functional for dis-
tinguishing axions of the masses m = 10−21 eV, m = 10−22 eV and m = 10−23
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eV from standard CDM. Unlike the above studies, we do not give constraints
on the mass parameter but estimate whether future weak lensing surveys have
the constraining power to distinguish FDM from CDM for the currently debated
FDM models.

We start by giving an introduction to the statistical description of cosmic
random fields and review the basics of weak lensing. Afterwards, we go on to
describe our choice of parameters and initial conditions, especially in terms of
the considered axion masses, before discussing the lensing results.

4.1 Statistics of Cosmic Fields

This section introduces the statistical basics required to understand the time
evolution of cosmic fields. In particular, we draw on the review paper by Bern-
ardeau et al. (2001, p.40 ff) to introduce the notion of n-point correlation function
and its counterpart in Fourier-space.

In the following, we will assume that the cosmic density field is statistically
homogeneous, that is, its moments are translation invariant. Moreover, we assume
it to be statistically isotropic, that is, the joint multi point probability distribution
functions p(δ1, δ2, . . .) are invariant under spatial rotations. These two properties
reflect the cosmological principle. The two-point correlation function is defined
as the joint ensemble average of the density at two different locations

ξ(r) = 〈δ(x)δ(x + r)〉, (169)

which depends only on the norm of r due to statistical isotropy. Fourier trans-
forming the two point-correlation function, we find

〈δ(k1)δ(k2)〉 = δD(k1 + k2)
∫ d3r

(2π)3 ξ(r)e
ik·r (170)

≡ δD(k1 + k2)P (k1, t), (171)

where we defined the density power spectrum P (k1). Because of the cosmological
principle it only depends on the modulus of k1. Higher-order correlation func-
tions are defined as the connected part (denoted with subscript c) of the joint
ensemble average of the density in an arbitrary number of locations. The notion
of connected parts is best explained by introducing a diagrammatic representa-
tion of the moments of a statistical distribution. Figure 16 depicts the third-order
moment of the cosmic density field. It shows how higher-order moments can be
decomposed into sums of products of connected parts. Higher-order spectra can
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〈δ(x1)δ(x2)δ(x3)〉 = + + + +

Figure 16: Diagrammatic representation of the third-order moment of the cosmic density field
δ. The rightmost diagram represents the connected three-point correlation function.

be defined as higher-order correlation functions in Fourier space

〈δ(k1),k2 . . . , δ(kn)〉c =: δD(k1 + k2 + . . .+ kn)Pn(k1,k2, . . . ,kn), (172)

where Pn is the nth-order spectrum and the sum of momenta is always zero
because of homogeneity of space. In the following, we will be interested in the
cases n = 3 and n = 4. The matter three-point correlation function in Fourier
space is called the matter bispectrum B(k1,k2,k3). The bispectrum depends on
the length of two wave vectors as well as the angle enclosed by them. The matter
four-point correlation function in Fourier space is called the matter trispectrum
T (k1,k2,k3,k4) and depends on the length of three wave vectors as well as the two
angles enclosed by them. Most inflationary models predict the primordial density
perturbation to be a Gaussian random field. This means that all possible joint
multi point probability distribution functions are given by multivariate Gaussian
distributions. Gaussian random fields are completely determined by the two-
point correlation function. As long as the primordial density perturbations evolve
according to linear evolution equations, they stay Gaussian. Wick’s theorem now
states that all their statistical properties are already encapsulated in the power
spectrum:

〈δ(k1) . . . δ(k2p+1)〉 = 0, (173)
〈δ(k1) . . . δ(k2p)〉 =

∑
all pair associations

∏
p pairs(i,j)

〈δ(ki)δ(kj)〉. (174)

With the help of Wick’s theorem, any ensemble average of product of variables
can be recast as products of ensemble averages of pairs. In other words, higher-
order correlations functions of Gaussian random fields either vanish or can be
expressed as products of two-point correlation functions. Thus, we can follow
the time evolution of the power spectrum in order to study the cosmic dens-
ity field in the linear regime. However, the dynamics of gravitational instability
is nonlinear and therefore nonlinear evolution inevitably leads to the develop-
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ment of non-Gaussian features. Accordingly, we need to understand the evolution
of higher-order moments. Fortunately, Eulerian PT gives us a way to describe
how non-Gaussian features arise for gravitational clustering from Gaussian ini-
tial conditions. This is because the nonlinearities in the equations of motion
are quadratic in CDM. Therefore, gravitational instability generates connected
higher-order correlation functions that scale as ξn ∝ ξn−1

2 at large scales, where
|ξ2| � 1. As a consequence, PT applies (Fry 1984). The quantum pressure term
in FDM does not alter this conclusion since it only acts on small scales.

4.1.1 Power Spectrum

We start by considering the evolution of the evolution of the power spectrum
and expand it as a perturbation series

P (k, a) = P (0)(k, a) + P (1)(k, a) + . . . . (175)

In linear PT, the time evolution of linear density fluctuations can be approximated
by δ(x, a) = D+(a)δ(x). The time evolution of the linear power spectrum P (0)

can therefore be expressed as linear scaling of the initial power spectrum:

P (0)(k, a) = D+(a)2

D+(a0)2P
(0)(k, a0). (176)

For the nonlinear discussion, we need to consider two-point correlations of higher-
order perturbations. The basic idea of computing higher-order corrections to
the connected n-point correlation functions is as follows: We make use of the
PT kernels Fn defined in Eq. (106) to express the n-point correlations of non-
Gaussian perturbations as integrals over higher-order correlations of Gaussian
perturbations. We then apply Wick’s theorem to express higher-order correlations
of Gaussian perturbations as two-point correlations of Gaussian perturbations.
The latter are completely specified by the initial conditions. This process allows
for a diagrammatic representation that we will make use of in the following.
Figure 17 shows the diagrammatic representation of the power spectrum at tree-
level. A diagram with n vertices represents an n-point correlation function. Every

〈δ(1)δ(2)〉(0)
c =

k

Figure 17: Tree diagram for the power spectrum.

line with momentum label k corresponds to a linear power spectrum P (0)(k). The
PT kernels Fn(k1, . . . ,kn) represent the vertex couplings. We distinguish between
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tree and loop diagrams. Tree diagrams are trees in a topological sense which
does not imply that they correspond to first-order PT. Loop diagrams involve at
least one vertex connected to itself through a closed path. Loops in diagrams
correspond to momentum integrals. The first higher-order contribution P (1) to
the power spectrum comes at loop-level. The two loop-level contributions to the
1-loop matter power spectrum P (1) are often written as

P (1)(k, a) = P22(k, a) + P13(k, a), (177)

where P22 corresponds to the right diagram and P13 to the right diagram in Figure
18. The two contributions are explicitly given by:

k

k − q

k

q

Figure 18: Loop diagrams for the two-point function or power spectrum. The diagram on
the left admits one additional permutation. The diagram on the right admits five additional
permutations because of the symmetry of F (s)

3 .

P22(k, a) = 2
∫

d3q[F (s)
2 (k − q, q)]2P (0)(|k − q|, a)P (0)(q, a), (178)

P13(k, a) = 6
∫

d3qF
(s)
3 (k, q,−q)P (0)(k, a)P (0)(q, a). (179)

The other contribution P12 to P (1) vanishes because of Wick’s theorem:

〈δ(1)(k1), δ(2)(k2)〉 =δD(k1 + q1 + q2)
× F2(q1, q2)〈δ(1)(q1), δ(1)(q2), δ(1)(k2)〉

=0.

(180)

4.1.2 Bispectrum

Next, we study the perturbative expansion of the bispectrum

B(k1,k2,k3, a) = B(0)(k1,k2,k3, a) +B(1)(k1,k2,k3, a) + . . . , (181)

where B(0) is the tree-level part as shown in Figure 19. The diagrams for the
bispectrum involve vertices connecting two lines, in other words the PT kernel
F2. That is why they correspond to second-order PT. B(1) is the corresponding
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〈δ(2)(k1)δ(1)(k1)δ(1)(k3)〉c =

Figure 19: Tree diagram for the bispectrum admitting two additional permutations k1 ↔ k3
and k2 ↔ k3.

one-loop correction given by fourth-order perturbation theory. Wick’s theorem
implies that odd-order correlations functions vanish for Gaussian correlations.
Since we assume inflation to only generate Gaussian correlations for the density
field, the bispectrum vanishes if we only consider linear-order density fluctuations.
The tree diagram for the bispectrum encodes the expression

〈δ(2)(k1)δ(1)(k1)δ(1)(k3)〉c
= 2F (s)

2 (k1,k1 − k2)PL(k1)PL(k2) + 2 permutations.
(182)

The one-loop contribution to the bispectrum consists of four distinct diagram
involving up to fourth-order PT kernels:

B(1) = B222 +BI
321 +BII

321 +B411, (183)

depicted in Figure 20 (from left to right). The explicit expressions are given by:

+
+ +

Figure 20: Loop-level corrections for the three-point function or bispectrum.
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B222 = 8
∫

d3qPL(q, a)PL(|q + k1|, a)PL(|q − k2|, a)

× F
(s)
2 (−q,−q + k1)F (s)

2 (−q − k1,−q + k2)F (s)
2 (k2 − q, q),

BI
321 = 6

∫
d3qPL(k3, a)PL(q, a)PL(|q − k2|, a)

× F
(s)
2 (q,k2 − q)F (s)

3 (−q, q − k2,−k2)
+ 5 permutations,

BII
321 = 6

∫
d3qPL(k2, a)PL(k3, a)PL(q, a)

× F
(s)
2 (k2,k3)F (s)

3 (k3, q,−q)
+ 5 permutations,

B411 = 12
∫

d3qPL(k2, a)PL(k3, a)PL(q, a)

× F
(s)
4 (q,−q,−k2,−k3)

+ 2 cyclic permutations.

(184)

It is useful to define the reduced bispectrum as

Q(k1,k2,k3) = B(k1,k2,k3)
P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)

. (185)

The loop expansion of the numerator and denominator yields

Q(k1,k2,k3) = B(0)(k1,k2,k3) +B(1)(k1,k2,k3) + . . .

Σ(0)(k1,k2,k3)Σ(1)(k1,k2,k3) + . . .
, (186)

where

Σ(0)(k1,k2,k3) = P (0)(k1)P (0)(k2) + P (0)(k2)P (0)(k3) + P (0)(k3)P (0)(k1),
Σ(1)(k1,k2,k3) = P (0)(k1)P (1)(k2) + P (0)(k2)P (1)(k3) + P (0)(k3)P (1)(k1)

+ P (1)(k1)P (0)(k2) + P (1)(k2)P (0)(k3) + P (1)(k3)P (0)(k1).

(187)

Expanding Q perturbatively as Q = Q(0) +Q(1) + . . . gives

Q(0)(k1,k2,k3) = B(0)

Σ(0) , (188)

Q(1)(k1,k2,k3) = B(1)

Σ(0) − Q(0)Σ(1)

Σ(0) . (189)

The reduced bispectrum Q(0) at tree-level is independent of time and normalisa-
tion. For scale-free initial conditions P (0), i.e. P (0) ∝ kn with the spectral index
n, Q(0) is also independent of overall scale and for equilateral configurations it
is also independent of the spectral index. At loop-level, Q(1) depends on the
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normalisation of the linear spectrum and its amplitude increases with time.

4.1.3 Trispectrum

Finally, the diagrams for the trispectrum involve vertices connecting two and
three lines and therefore correspond to second- and third-order PT. One can
decompose the tree-level trispectrum into the contributions

T (0)(k1,k2,k3,k4, a) = T1221(k1,k2,k3,k4, a) + T3111(k1,k2,k3,k4, a), (190)

depicted in Figure 21 (from left to right).

,

Figure 21: Tree diagrams for trispectrum.

The explicit expression for the contributions to the tree-level trispectrum in
terms of the tree-level spectra are given by:

T1221(k1,k2,k3,k4) =4P (0)(k3)P (0)(k4) (191)(
F

(s)
2 (k13,−k3)F (s)

2 (k24,−k4)P (0)(k13)

+ F
(s)
2 (k14,−k4)F (s)

2 (k23,−k3)P (0)(k14)
)
,

T3111(k1,k2,k3,k4) =6P (0)(k1)P (0)(k2)P (0)(k3)F (s)
3 (k1,k2,k3). (192)

4.2 Weak Lensing

This section introduces the foundations of weak lensing and heavily draws on
(Bartelmann and Schneider 1999) and (Bartelmann and Maturi 2016). We start
with the geodesic deviation equation that describes the propagation of a light
bundle in a general space time

d2ξ

dλ2 = T ξ, (193)

where T is the optical tidal matrix, λ parameterises the curve and ξ is the trans-
verse separation of neighbouring geodesics. In a perturbed spatially flat FLRW
background, the local deflection D is given by:

d2D

dχ2 = − 2
c2 δgrad (∇⊥φ(D(θ, χ), χ)) , (194)
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where δgrad is the difference in the gradients perpendicular to the line of sight
∇⊥, φ is the Newtonian gravitational potential and θ the observed position. The
factor of two comes from the fact that the perturbed FLRW metric has equal
perturbations in both its temporal and spatial components. The local deflection
equation is solved by the Green’s function

G(χ, χ′) =
χ− χ′ if χ > χ′

0 else
. (195)

One can now integrate the gravitational potential along the line of sight to find
the deflection D. However, the integral over the actual light path is quite com-
plicated. The calculation can be significantly simplified with the Born approx-
imation. Since typical deflection angles for weak lensing are on the order of arc
seconds or smaller, the integration path can be approximated by a straight line.
We further assume that corrections can be calculated relative to the fiducial ray.
The comoving separation of two light rays propagating through the unperturbed
background is then given by D = χθ and we can express the reduced deflection
angle as gradient of the lensing potential of an extended lens acting on a source
at distance χS:

α = ∇⊥ψ, ψ(θ) = 2
c2

∫ χS

0
dχχS − χ

χSχ
φ(χθ, χ), (196)

where the potential is evaluated at the position χθ perpendicular to and χ parallel
to the line of sight. The lensing potential is of fundamental importance in weak
lensing and encodes all properties of the gravitational lens. Angles are given as
two component-vectors because they are characterised by both a magnitude and
a direction. For the further analysis, we want to describe quantities as functions
on the sky, i.e. the angular position θ on the celestial sphere. Consequently,
gradients need to be taken w.r.t. angles rather than perpendicular distances and
the perpendicular gradient ∇⊥ from Eq. (196) is replaced by a gradient w.r.t. θ
∇θ. On small angular scales, we can Taylor expand the trigonometric function
and write

∇⊥ = χ−1∇θ. (197)

All gradients in the following are to be understood as w.r.t. θ and we introduce
the common short-hand notation

ψij ≡= ∂2ψ

∂θi∂θj
. (198)
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The lensing potential can be characterised by the convergence κ and the shear γ

κ = 1
2∆ψ, γ1 = 1

2(ψ11 − ψ22), γ2 = ψ12. (199)

Intuitively, the convergence and the shear describes how gravitational lenses re-
spectively magnify and distort source images. Using the Poisson equation on the
expression for the convergence, we find

κ(θ, χ) = 3
2
H2

0
c2 Ωm,0

∫ χ

0
dχ (χS − χ)χ

χS

δ(χ)
a

. (200)

Equation (200) shows that the convergence is directly proportional to a line-of-
sight integration over the density contrast. The weight function in the integral
W is also called weak lensing efficiency and can be modelled as

Wκ(χ) = 2Ωm

2a
1
χ2
H

G(χ)χ, (201)

with the weighted distance distribution G(χ) of the lensed galaxies,

G(χ) =
∫ χH

χ
dχ′ q(z) dz

dχ′
χ′ − χ

χ′ , (202)

where q(z) is the galaxy-redshift distribution measured in a weak lensing survey.
Schematically, the relationship between the density contrast and the effective
convergence is represented in Figure 22. Measuring correlation functions of the

ψ φ

κ δ

∆ψ=2κ

ψ=2
∫

dχWψ(χ)φ

κ=
∫

dχWκ(χ)δ

∆ φ

c2 = 3
2

Ωm
2χH2 δ

Figure 22: Relationship between density contrast, gravitational potential, lensing potential
and effective convergence.

convergence will give us a way to infer correlation functions of the density con-
trast. The angular correlation function for a quantity x(θ) measured on the sky
is given by

ξx(ϕ) ≡ 〈x(θ)x(θ + ϕ)〉 . (203)
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This average is one over all positions θ with an average over all orientations of
the separation vector ϕ on the sky and therefore rather complicated. We take
the Fourier transform to obtain the angular power spectrum

C(`) =
∫

d2ϕξ(ϕ)e−i`·ϕ. (204)

In order to simplify the computation of angular correlation functions we employ
Limber’s approximation (Limber 1953). It asserts that if the quantity x(θ) defined
in two dimensions is a projection

x(θ) =
∫ χS

0
dχw(χ)y(χθ, χ) (205)

of a quantity y(r) defined in three dimensions with a weight function w(χ), then
the angular power spectrum of x is given by

Cx(`) =
∫ χS

0
dχw

2(χ)
χ2 Py

(
`

χ

)
, (206)

where Py(k) is the power spectrum of y, evaluated at the three-dimensional wave
number k = `/χ. This approximation is applicable if y varies on length scales
much smaller than the typical length scale of the weight function w. Intuitively,
we divide χ by ` such that we can compare different scales for a given angle.
In other words, 1

`
acts like a weighting function. From the Limber approxima-

tion, it immediately follows that the convergence spectrum Cκ(l) is determined
by a weighted line-of-sight integral over the power spectrum Pδ(k) of the density
contrast. Likewise, we can express the convergence bi- and trispectrum as appro-
priately weighted line-of-sight integrals over the bi- and trispectra. All in all, we
find

Pκ(`1) =
∫ χ∞

0

dχ
χ2 W

2
κ (χ)Pδ

(
`1

χ

)
, (207)

Bκ(`1, `2, `3) =
∫ χ∞

0

dχ
χ4 W

3
κ (χ)Bδ

(
`1

χ
,
`2

χ
,
`3

χ

)
, (208)

Tκ(`1, `2, `3, `4) =
∫ χ∞

0

dχ
χ6 W

4
κ (χ)Tδ

(
`1

χ
,
`2

χ
,
`3

χ
,
`4

χ

)
, (209)

where we introduced the subscripts δ to denote the matter spectra as opposed
to the convergence spectra denoted by the subscript κ. We now assume a simple
model for the galaxy redshift distribution q(z)

q(z) = q0

(
z

z0

)2
exp

(
−
(
z

z0

)β)
dz with q−1

0 = z0

β
Γ
(

3
β

)
, (210)
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used in the Planck Euclid survey (Laureijs et al. 2011) with a median redshift
z0 = 0.9 and β = 1.5. This enables us to calculate the convergence spectra using
the perturbation theory developed in the last chapter. However, we are still
missing one crucial piece of information for better understanding weak lensing
surveys: How do we measure convergence spectra and which uncertainties are
involved in the measurement process? The convergence κ alone can only be
accessed through the magnification of images of distant galaxies. Measuring the
magnification is possible, but difficult. In turn, it is more feasible to measure
the shear γ by studying the surface brightness of images of distant galaxies. One
can either fit models for the surface brightness of eiptical sources to the images
and obtain their ellipticity as fit parameters or measure the quadrupole moments
of the surface brightness in a model-free approach. Transforming the defining
equations for κ and γ into Fourier space

2κ = −`2ψ, 2γ1 = −(`2
1 − `2

2)ψ, γ2 = −`1`2ψ, (211)

we conclude that |γ|2 = |κ|2 in Fourier space. Therefore, the shear power spec-
trum equals the convergence power spectrum. For this reason, we will use the
terms shear spectra, convergence spectra and lensing spectra interchangeably in
the following. To sum up, we learned that we do not actually measure the cosmic
convergence, but the cosmic shear. Yet, there is still a problem with this approach:
Individual galaxies cannot be used to determine the cosmic shear because they
are intrinsically elliptical. What we can do, however, is measure an ensemble of
galaxies. Together with the crucial assumption that the intrinsic ellipticities εS
approach zero when averaged over sufficiently large samples 〈εS〉 = 0, one can
distinguish intrinsic ellipticities and the ellipticity caused by lensing. Paramet-
erising the latter by the reduced shear g = γ

1−κ , we approximately find that the
total measured ellipticity ε is

ε ∼ g + εS. (212)

Averaging over N faint galaxy images, the scatter of the intrinsic ellipticity is
reduced to

∆〈εS〉 ≈ σε√
N
, (213)

where σε is the standard deviation of the intrinsic ellipticity. The angular resol-
ution of this measurement is limited by

∆θ = N

n̄π

1
2

(214)
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where n̄ is the average number of source galaxies per squared arc minute. As a
result, the observed convergence spectrum, denoted by the superscript obs, can be
modelled as the true spectrum with an additional shot noise contribution:

C(obs)
κ (`) = Cκ(`) + σ2

ε

n̄
. (215)

Assuming that the estimates for the spectra can be approximated by a Gaussian
distribution, we can estimate the covariance matrices for the lensing spectra,
bispectra and trispectra. The covariance of the lensing spectrum is given by

cov(`1, `2) = δD(`1 − `2)
2

(2l + 1)fsky
C(obs)
κ (`1)C(obs)

κ (`2), (216)

where fsky denotes the fraction of the observed sky and we neglect a contribution
proportional to the lensing trispectrum due to the non-Gaussianity of the weak
lensing field (Kaiser 1996; Scoccimarro, Zaldarriaga and Hui 1999). Takada and
Jain (2003) give an expression for the covariance of the weak lensing bispectrum:

cov(`1, `2, `3) = ∆(`1, `2, `3)
fsky

C(obs)
κ (`1)C(obs)

κ (`2)C(obs)
κ (`3), (217)

where `1 ≤ `2 ≤ `3 ≤ `4 in the following in order to count every triangle/rectangle
configuration only once. ∆(`1, l2, l3) counts the multiplicity of triangle configur-
ations and is defined as

∆(`1, l2, l3) =


6, if `1 = l2 = l3,

2, if li = lj for i 6= j,

1, otherwise.

(218)

Similarly, we have

cov(`1, `2, `3, `4) = ∆(`1, `2, `3, `4)
fsky

C(obs)
κ (`1)C(obs)

κ (`2)C(obs)
κ (`3)C(obs)

κ (`4), (219)

for the covariance of the weak lensing trispectrum where ∆(`1, `2, `3, `4) counts
the multiplicity of rectangle configurations. These covariance matrices allow us
to understand the statistical uncertainties on the power spectrum measurement.
With their help, we can calculate the expected cumulative signal-to-noise ratio
Σ(`) for weak lensing measurements of the different spectra up to multipole order
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` 13:

Σ2
P (`) =

∑̀
`1=`min

P 2
κ (`1)

cov(`1, `1)
, (220)

Σ2
B(`) =

∑̀
`1,`2,`3=`min

B2
κ(`1, `2, `3)

cov(`1, `2, `3)
, (221)

Σ2
T (`) =

∑̀
`1,`2,`3,`4=`min

T 2
κ (`1, `2, `3, `4)

cov(`1, `2, `3, `4)
. (222)

We can also give an estimate of whether we can distinguish CDM and FDM
experimentally via a weak lensing survey. We assume that the true spectra are
given by the CDM spectra and compute the χ2-functionals for measuring the
noise-weighted mismatch between the true CDM and the wrongly assumed FDM
spectra:

χ2
P (`) =

∑̀
`1=`min

(PCDM
κ − P FDM

κ )2(`1)
cov(PCDM

κ )(`1, `1)
, (223)

χ2
B(`) =

∑̀
`1,`2,`3=`min

(BCDM
κ −BFDM

κ )2(`1, `2, `3)
cov(BCDM

κ )(`1, `2, `3)
, (224)

χ2
T (`) =

∑̀
`1,`2,`3,`4=`min

(TCDMκ − T FDMκ )2(`1, `2, `3, `4)
cov(TCDMκ )(`1, `2, `3, `4)

. (225)

4.3 Experimental Setup

At this point, we are almost in a position to compute weak lensing observables
in FDM and CDM. The remaining ingredients that we will discuss in this section
are the following: Choice of FDM masses, choice of lensing survey parameters
and generation of initial conditions.

4.3.1 Choice of FDM Masses

One of the current popular FDM models is one where all of DM is composed
of axions with m = 10−22 eV (Hu, Barkana and Gruzinov 2000; Marsh 2016;
Hui et al. 2017). This mass has also been suggested by Schive, Chiueh and
Broadhurst (2014) who fitted the ground state density of a halo obtained in a
numerical simulation of FDM to the mass distribution of the dwarf spherical

13Note that unlike for the lensing bispectrum where a configuration is uniquely specified by the
three multipole moments `1, `2, `3 up to spatial orientation, a lensing trispectrum configuration
is not uniquely specified by `1, . . . , `4. In our code, we sum over all configurations by varying
three sides and the two enclosed angles.
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galaxy Fornax. Comparing galaxy formation in CDM and FDM models, Schive
et al. (2015) found the bound m ≥ 1.2 · 10−22 eV in the 2σ-range. Hložek, Marsh
and Grin (2018) study the possible mass range for FDM via CMB lensing based
on the full Planck data set and find no evidence for an ULA component in the
mass range 10−33eV ≤ m ≤ 10−24 eV. Constraints from the Lyman-α forest
have larger uncertainties than the constraints from the CMB because of the need
to model the temperature evolution of the intergalactic medium. Nevertheless,
the Lyman-α forest can be used to place the strongest constraints on deviations
from CDM on small scales. Kobayashi et al. (2017) studied how measurements
of the Lyman-α forest flux power spectrum by the XQ-100 survey constrain a
multicomponent axion DM model. They claimed that FDM models with m <

10−21 eV were ruled out. However, they make use of hydrodynamical CDM
simulations using FDM initial conditions, thereby neglecting FDM dynamics at
late times. Zhang, Liu and Chu (2019) carefully examine the Lyman-α forest
constraints on FDM and conclude that simulations with quantum pressure are
required for reliable constraints based on the Lyman-α forest. They also point
out that the simulation uncertainties of hydrodynamic simulations may have been
underestimated in previous studies. Therefore, strong Lyman-α bounds such as
the 95% C.L. lower limit m > 2 · 1020 eV given by Rogers and Peiris (2021) based
on pure CDM dynamics with FDM initial conditions need to be taken with a
pinch of salt. In fact, many other, often complementary cosmological probes can
be used to constrain FDM models. For instance, González-Morales et al. (2017)
found the upper bound of m > 4 · 1023 eV by fitting the luminosity-averaged
velocity dispersion of dwarf spherical galaxies; Sarkar, Pandey and Sethi (2021)
use the Lyman-α effective opacity to find m > 10−23 eV and Maleki, Baghram
and Rahvar (2019) find m > 7 · 10−23 eV by studying the X-ray emissions during
solitons mergers. The above-mentioned mass bounds motivate us to perform
our computations for three different FDM masses m = 10−21, m = 10−22 and
m = 10−23 eV that are all within or near the range of FDM masses still currently
debated.

4.3.2 Lensing Survey Parameters

Our lensing survey parameters are these of a Euclid-like survey and listed in
table 7. Perhaps most importantly, we list results up to a maximum multipole
moment of `max = 10000. Such a high multipole moment is not accessible in a
weak lensing survey. In order to see the effect of axion DM in the considered
mass range, we need to resolve scales at the order of k = 1 h/Mpc which roughly
corresponds to multipole orders ` & 1000. In practice, the highest multipole
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moment measurable in a weak lensing survey is limited by the shape noise. The
signal-to-noise ratio of a single multipole moment drops below 1 at ` ∼ 3000.
However, we may still gain information by summing over these noise-dominated
multipole moments. We expect our results to be reliable in this range because
we make a relatively conservative estimate for the shape noise and tree- and even
loop-level PT underestimate the power on small scales in the nonlinear regime. At
even higher multipole moments of around ` = 5000, baryonic feedback becomes
a important, a process which we neglect entirely in PT. At this point, our results
become unreliable. We still show the plots for multipole moments ` & 5000 in
order visually compare the different masses.

4.3.3 Initial Power Spectra

In the section on linear perturbation theory, we derived how the CDM and
FDM power spectrum evolve in linear approximation. However, the linear growth
equations (73) and (89) are only valid in a radiation-free universe, on subhorizon-
scales and where matter can be approximated as a non-relativistic fluid. In order
to obtain the initial matter power spectrum at a redshift before nonlinear evolu-
tion becomes dominant, one is required to solve a coupled system of relativistic
Boltzmann equations for baryons, dark matter and radiation under space-time
expansion. Codes such as CAMB (Lewis, Challinor and Lasenby 1999) for CDM
and axionCAMB (Hlozek et al. 2014) for FDM, also known as Boltzmann solv-
ers, perform exactly this task. They return the power spectrum at the desired
time in the form of a transfer function T (k, a) that encodes all the nonlinear
modifications that the primordial power spectrum undergoes while evolving to
intermediate redshift:

P (0)(k, a) = ND2(a, a0)T 2(k, a)Pprim(k). (226)

The norm of the norm of the power spectrum N as well as the primordial power
spectrum Pprim have to be determined separately. We assume the primordial
spectrum after inflation to be the Harrison-Zeldovich spectrum with Pprim ∝ k

because of scale-invariance of the perturbations in the gravitational potential. As
for the initial FDM spectrum, it can in fact be obtained from the CDM spectrum
with the help of yet another transfer TFDM(k, a) that encodes how FDM dynamics
differ from CDM dynamics. Hu, Barkana and Gruzinov (2000) gave a semi-
analytic expression for the FDM transfer function that is valid for m & 10−24 eV

PFDM(k, a) = T 2
F (k, a)PCDM(k, a), TF (k, a) ≈ cosx(k, a)3

1 + x(k, a)8 , (227)
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where x(k, a) = 1.61( m
1e−22) 1

18 k
kJ (a) , leading to a drop of power by a factor of 2 at

k 1
2

≈ 1
2kJ

(
m

10−22eV

) 1
18
. (228)

For lower masses, scale-dependent growth remains relevant at late times and the
transfer function becomes redshift-dependent. However, in the following, we shall
rely on the transfer functions provided by the CAMB and axionCAMB codes
shown in Figure 23. We can justify that at the time a0 = 0.01 corresponding
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Figure 23: Linear matter power spectra at redshifts z = 0 and z = 99 with respective Jeans
scales from Eq. (86) at m = 10−22 eV. The purple line Dnum denotes the axionCAMB initial
power spectrum evolved from z = 99 to z = 0 using the FDM growth factor obtained by
numerical Integration of Eq. (89).

to a redshift z = 99, all scales of interest are still in the fully linear regime by
computing the scale λNL = 2π

kNL
at which nonlinearities becomes relevant. This

scale can be estimated as the scale where the linear variance of δ is unity:

1 != σ2 = 1
2π2

∫ ∞

0
dkP (k)k2. (229)
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Figure 24: Linear CDM and FDM fluctuation variance as function of the scale k. At z = 99,
integration of the spectrum yields a variance of σ2 ∝ 10−3 implying that linear linear theory
is still applicable. The red, dotted, vertical line denotes the scale kNL which the fluctuation
variance at z = 0 is unity: kNL ≈ 0.3 h/Mpc.

4.4 Results

All of the following results were calculated in the fiducial cosmology at z = 0.
Unless indicated otherwise, we used the equations for nonlinear Eulerian per-
turbation theory in the last chapter for all nonlinear quantities. The code that
computes the matter spectra, bispectra and trispectra in CDM and FDM is avail-
able under https://github.com/KunkelAlexander/fdm-eulerpt.

4.4.1 Spectra

Figure 25 shows the CDM and FDM power spectra at tree-level and with
loop-level corrections. Below the respective Jeans scales, power is strongly sup-
pressed in the FDM model. Nonlinear corrections at loop-level transfer power to
small scales, but suppression is still dominant. Figure 26 shows the respective
convergence spectra. Nonlinear corrections significantly increase the magnitude
of the dimensionless spectra for multipole moments ` & 100. Whereas the CDM
and FDM spectra for 1000 ≤ ` ≤ 3000 can be visibly distinguished at m = 10−23

eV, a mass of m = 10−22 eV already requires an angular resolution of up to
` = 10000 and a mass of m = 10−21 eV leads to only marginal, visual differ-
ences with CDM up to ` = 10000. This can also be explained by translating the
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Figure 25: Matter power spectra at z = 0 at tree-level and with loop-level corrections. The
dotted, vertical lines denote the respective Jeans scales from Eq. (86) at z = 99.

comoving quantum Jeans scale into a corresponding multipole order by an order-
of-magnitude estimate. We define the quantum Jeans multipole order `J(m) via

`J(m) ≡ π

arctan
(
kJ (m)
χ(z=z0)

) , (230)

where χ(z = z0) is the comoving distance at the redshift z0 and kJ is as defined
in Eq. (86) at z = 99. For the mean redshift z0 = 0.9 of the redshift distribution
defined in Eq. (210), we obtain `J (m = 10−21eV) ≈ 88000, `J (m = 10−21eV) ≈
28000 and `J (m = 10−23eV) ≈ 8800 . Since these quantum Jeans multipole orders
are too high to be measurable in a weak lensing survey, the vertical lines in Fig.
26 display 0.1 · `J which roughly describes the multipole order where the CDM
and FDM lensing spectra start to differ. Figures 27 and 29 show the equilateral
matter bispectra and equilateral square matter trispectra and Figures 28 and
30 the respective convergence spectra. As in the case of the power spectrum,
loop-level corrections for the bispectrum have the effect of adding power on small
angular scales in both CDM and FDM. At both tree- and loop-level, suppression
below the Jeans scale is still the dominant effect in FDM, however.
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Figure 26: Dimensionless convergence spectra at tree-level and with loop-level corrections at
z = 0. The vertical, dotted lines correspond to 0.1 · `J , where the quantum Jeans multipole
order `J is defined in Eq. (230).
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Figure 27: Equilateral matter bispectra at z = 0 at tree-level and with loop-level corrections.
The dotted, vertical lines denote the respective Jeans scales from Eq. (86) at z = 99.
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Figure 28: Dimensionless equilateral convergence bispectrum configurations at z = 0. The
vertical, dotted lines correspond to 0.1 · `J , where the quantum Jeans multipole order `J is
defined in Eq. (230).
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Figure 30: Dimensionless equilateral square convergence trispectrum configurations at z = 0.
The vertical, dotted lines correspond to 0.1 · `J , where the quantum Jeans multipole order `J

is defined in Eq. (230).

The loop-level corrections given by Eq. (177) were computed in a form free
of infrared divergences using the CUBA-library (Hahn 2004). Details of the
numerical integration can be found in appendix A.4. All loop lensing quantities
have numerical errors of up to 10 % as a result of the computational challenges
involved in computing FDM quantities. We also computed the lensing spectra
using CDM PT with FDM initial conditions. The respective figures can be found
in appendix A.5. CDM dynamics give loop-level corrections to the lensing spectra
and bispectra that are, within the numerical errors, indistinguishable from the
ones computed using FDM PT. They indicate that the influence of late-time
nonlinear FDM dynamics is negligible for weak lensing observables. We conclude
that the suppression of the spectra below the Jeans scale is mainly prescribed by
the initial power spectra at high redshift in PT.

Figure 31 shows the angular dependence of the reduced matter bispectrum
Q(0) defined in Eq. (188) at tree-level. The fact that Q(0) is enhanced for θ = 0, π
reflects the fact that large scale flows generated by gravitational instability are
mostly parallel to density gradients. As discussed earlier, the kernel F (s)

2 includes
the first higher-order correction from the quantum pressure term. Therefore
it does not only counteract gravitational collapse but can also enhance it as
exemplified by the graphs for m = 10−21 eV and m = 10−22 eV at scales k around
or below the Jeans scale for the respective masses.
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Figure 31: Angular dependence of reduced bispectrum at tree-level with θ = ^(k1,−k2) with
k1 = 10 h/Mpc and k2 = 0.1 h/Mpc at z = 0. The graph for m = 10−23 eV is not shown
because it is in the oscillating regime and depends on how the growth factors and the initial
spectra approximate oscillations.

4.4.2 Signal-To-Noise Ratios and χ2-Functionals

Figure 32 shows the signal-to-noise ratios obtained in CDM according to Eqs.
(220), (221) and (222). We compute the respective covariance matrices using
the convergence spectrum with loop-level corrections. This is because the non-
vanishing bi- and trispectrum themselves are generated by nonlinear dynamics.
Using the tree-level convergence spectrum would therefore underestimate the co-
variance and overestimate the attainable signal-to-noise ratio. Since the bulk of
the cumulative signal comes from the modes with low `, there are no signific-
ant differences for the attainable signal-to-noise ratios in CDM and FDM weak
lensing surveys for the considered masses. The sums in Eqs. (220), (221) and
(222) were expressed as integrals and integrated using the CUBA-library (Hahn
2004). We could not compute the respective signal-to-noise ratios for the weak
lensing bispectra at loop-level for FDM since the integrals involved proved com-
putationally intractable. We did compare against the signal-to-noise ratios of
the loop-level lensing bispectra computed with CDM PT for FDM IC. Yet, these
results are also also subject to substantial numerical uncertainty since the Monte
Carlo-integration routine fails to give error estimates.
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Figure 32: Attainable cumulative signal-to-noise ratio in weak lensing survey.

Figure 33 visualises the angular dependence of the lensing bispectrum at tree-
level for m = 10−23 eV. The bottom plots reflect that the small-angular scales
where the CDM and FDM models actually differ only have a comparatively small
signal-to-noise ratio in a weak lensing survey. In contrast, Figure 34 shows the
corresponding loop-level results approximated by CDM PT with FDM IC. We ob-
serve that the loop-level corrections significantly enhance the signal-to-noise ratio
for multipole orders where CDM and FDM at m = 10−23 eV can be distinguished.
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Figure 33: Configuration dependence (first column) and signal-to-noise ratio (second column)
of weak lensing bispectrum at tree-level.
Color and size both represent magnitudes; Same, arbitrary normalisation across rows.
Top to bottom: CDM, FDM for m = 10−23 and difference between the two.
Left column: Dimensionless lensing bispectrum (`1`2`3) 3

4Bκ(`1, `2, `3) at z = 0.
Right column: signal-to-noise ratio Bκ(`1, `2, `3)/

√
cov(`1, `2, `3) at z = 0.
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Figure 34: Configuration dependence (first column) and signal-to-noise ratio (second column)
of weak lensing bispectrum at loop-level where FDM dynamics are approximated by CDM PT
with FDM IC.
Color and size both represent magnitudes; Same normalisation as in Fig. 33.
Top to bottom: CDM, CDM with FDM IC for m = 10−23 and difference between the two.
Left column: Dimensionless lensing bispectrum (`1`2`3) 3

4Bκ(`1, `2, `3) at z = 0.
Right column: signal-to-noise ratio Bκ(`1, `2, `3)/

√
cov(`1, `2, `3) at z = 0.
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Finally, Figure 35 shows the χ2-functionals for distinguishing CDM and FDM
computed according to Eqs. (223), (224) and (225) where all sums are again
expressed as integrals and calculated using the CUBA-library (Hahn 2004).
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Figure 35: χ2-functional to distinguish CDM and FDM as a function of the maximum multi-
pole order ` according to Eqs. (223), (224) and (225). The vertical, dotted lines correspond to
0.1 · `J , where the quantum Jeans multipole order `J is defined in Eq. (230). The horizontal
blue line corresponds to χ2 = 1.

The loop-level χ2-functionals are dominated by noise for low ` since they are
computed by interpolating the loop-level lensing spectra depicted in Fig. 26 using
cubic splines. They suggest that we may be able to distinguish CDM and FDM
at m = 10−21 eV for a maximum multipole order of ` = 2000. This is not the case
as shown by Figure 36 which compares the χ2-functionals computed via FDM PT
and CDM PT with FDM IC, where the latter were calculated without the use of
splines using high-dimensional MC integrations. We expect CDM PT with FDM
IC to underestimate the suppression of power w.r.t. the FDM model. Therefore,
it should give a lower bound on the attainable χ2-values. At large `, the loop-
level lensing spectrum results agree well for m = 10−22 eV and m = 10−23 eV. At
m = 10−21 eV however, CDM PT with FDM PT predicts much smaller χ2-values
for high `. We conclude that the respective FDM PT χ2 functional is dominated
by noise up to high `. Figure 37 underlines this conclusion. It displays the tree-
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level χ2-functionals for FDM PT and CDM PT with FDM IC that agree very
well.
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Figure 36: χ2-functional to distinguish CDM and FDM as a function of the maximum multi-
pole order ` according to Eqs. (223), (224) and (225). Both FDM dynamics and FDM dynamics
approximated by CDM PT with FDM initial conditions are shown. The vertical, dotted lines
correspond to 0.1 · `J , where the quantum Jeans multipole order `J is defined in Eq. (230).
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Figure 37: χ2-functional to distinguish CDM and FDM as a function of the maximum mul-
tipole order ` according to Eqs. (223), (224) and (225). FDM dynamics are approximated by
CDM PT with FDM initial conditions. The vertical, dotted lines correspond to 0.1 · `J , where
the quantum Jeans multipole order `J is defined in Eq. (230).

4.5 Discussion

In this chapter, we have seen how Eulerian perturbation theory can be used
to compute weak lensing observables. We derived the attainable signal-to-noise
ratios and χ2-functionals for distinguishing CDM and FDM in a Euclid-like weak-
lensing survey. The tree-level lensing spectrum results imply χ2 = 1, i.e. an
uncertainty of 1σ, for FDM with m = 10−23 eV at ` ∼ 700. At the masses
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m = 10−22 andm = 10−21, the respective signals are too weak to distinguish CDM
and FDM in our weak lensing survey up to ` = 3000. The lensing bispectrum
gives a lower χ2-functional than the lensing spectrum at tree-level. Assuming
that the loop-level CDM PT results with FDM IC underestimate the true χ2-
functionals, we find χ2 = 1 at ` ∼ 600 and ` ∼ 1500 for m = 10−23 eV and
m = 10−22 eV using the loop-level lensing spectra. The signal for m = 10−21 eV
is still too weak to be measurable in a realistic weak lensing survey. At loop-level,
the lensing bispectrum gives slightly higher χ2-values than the lensing spectrum.
The main uncertainty in our approach stems from the modelling of nonlinear
structure formation via PT. The signal-to-noise ratios for the tree- and loop-level
spectra and bispectra indicate that loop-level corrections lead to higher signal-to-
noise ratios. Since PT underestimates the magnitude of the nonlinear corrections
on small scales, the tree-level-only results for the χ2-functionals therefore give
a conservative lower bound for the χ2-values in a weak lensing survey. The
comparison of FDM PT and CDM PT with FDM initial conditions shows that
late-time nonlinear FDM dynamics only marginally affect the considered weak
lensing observables compared to CDM dynamics. The additional suppression of
power in nonlinear FDM dynamics do not lead to a measurable difference in our
weak lensing survey.
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5
Hybrid Simulation of FDM

Much of the recent progress in understanding FDM dynamics comes from
numerical simulations, often in the ultra-light regime for m = 10−22 eV. In the
literature, there are numerical studies of structure formation in the FDM model
using both the wave and the fluid formulation. They employ a number of different
algorithms, including spectral methods (Mocz et al. 2017; Edwards et al. 2018;
Du et al. 2018), finite difference methods (Schive, Chiueh and Broadhurst 2014),
finite volume methods (Schwabe, Niemeyer and Engels 2016; Li, Hui and Bryan
2018; Hopkins 2018) and smoothed particle hydrodynamics algorithms (Mocz and
Succi 2015; Nori and Baldi 2018).

The first high-resolution cosmological simulation of the wave formulation of
FDM was carried out by Woo and Chiueh (2008). They used a spectral method
to simulate FDM with a uniform mesh resolution of 10243 grid points, but even
such a high spatial resolution is inadequate for the innermost regions of halos.
One of the key requirement of cosmological simulations is the ability to resolve
a large dynamical range in scale. To form sufficiently many objects with the size
of dwarf galaxies, the simulation volume must span a few cubic megaparsecs.
On the lower end, the simulation must resolve scales at the order of ten parsecs
leading to a range in scale of ∼ 105. Schive, Chiueh and Broadhurst (2014) first
addressed this issue with the code GAMER. It uses an adaptive mesh refinement
(AMR) framework to solve the wave formulation of the SPS. The drawback of
solving the wave formulation is the need to resolve the de Broglie wavelength of
the matter wave even in regions where the density is low and smooth. The reason
is that the velocity is related to the gradient of the phase of the wave function, i.e.
a given velocity translates into a phase that varies on the scale of the de Broglie
wavelength λdB = 2π

mv
. If the latter is not resolved, the velocity field is not rep-

resented correctly (Li, Hui and Bryan 2018). This is in contrast to conventional
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CDM simulations with AMR that only require higher spatial resolution in regions
with higher density. In an FDM simulation with m = 10−22 eV and a velocity
of v = 100 km/s, the de Broglie wavelength λdB ∼ 1.2 kpc is much smaller than
the box size required for a large cosmological simulation. Because of their high
computational demands, existing wave simulations are therefore usually limited
to small box sizes 14. In contrast to wave simulations, simulations of the fluid
formulation do not need to resolve the de Broglie wavelength to correctly capture
large-scale dynamics. In fact, they even allow the adoption of a Lagrangian pic-
ture via smoothed-particle hydrodynamics methods incorporating the quantum
pressure. The possible simulation volumes are much closer to those attainable in
traditional N -body and smoothed-particle hydrodynamics approaches for CDM.
This is why hydrodynamical methods have been extensively used to study struc-
ture formation in FDM (Veltmaat and Niemeyer 2016; Schwabe, Niemeyer and
Engels 2016; Schive et al. 2015; Hopkins 2018; Mocz et al. 2017; Nori and Baldi
2018; Nori et al. 2018). Their biggest drawback, however, is that they fail to cor-
rectly resolve regions of interference because the quantum pressure is ill-defined
in regions of vanishing density. Therefore, fluid simulations of the SPS are gener-
ally not trustworthy. Ideally, one could create a hybrid AMR scheme that solves
the fluid formulation of the SPS on a coarse grid on large-scales and the wave
formulation on a refined grid on small scales thereby combining the advantages of
both approaches: The coarse grid on large scales need not resolve the de Broglie
wavelength while the wave formulation on small scales correctly describes inter-
ference effects. Such a hybrid approach will enable zoom-in simulations on dwarf
galaxies with the correct FDM dynamics on all scales. A first step in this dir-
ection has been taken by Veltmaat, Niemeyer and Schwabe (2018) and Schwabe
and Niemeyer (2021). They developed a hybrid code that employs a Lagrangian
N -body solver on large scales and a finite difference wave solver with AMR on
small scales. The critical part in such a hybrid scheme is the reconstruction of the
wave function from particle information at the N -body-Schrödinger-boundaries.
In this chapter, we develop a hybrid code on a static grid that solves the phase
equations (21) and (22) on large scales and switches to a wave solver when it
detects interference. We start by discussing the issue of reconstruction of the
wave function at the boundary between the fluid and wave simulations, hereafter
referred to as boundary matching. We then go on to give an introduction into
different simulation methods for the different formulations of the SPS. Finally, we

14Recently, a number of simulations (Mina, Mota and Winther 2020; Mocz et al. 2020) reached
larger box sizes in the wave formulation. May and Springel (2021) computed a de Broglie scale-
resolved FDM simulation in a 10 h/Mpc box on a very large static grid with 86403 points. This
simulation was enabled by a newly-developed highly parallelised FFT algorithm.
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describe our phase and hybrid algorithms and validate their numerical properties
using a number of one-, two- and three-dimensional test cases.

5.1 Boundary Matching Problem

The crucial issue in developing a hybrid code combining a fluid solver with a
wave solver lies in reconstructing the wave function from the Madelung formula-
tion of the SPS. Remember the Madelung transform from Eq. (20)

ψ(x, t) ≡
√
ρ(x, t)
m

eiS(x,t). (231)

The wave function is split up into its norm and its phase. We then take the
gradient of the phase to derive the velocity (see. Eq. (25)):

v = ~
ma

∇S. (232)

5.1.1 Evolution of the Velocity Field

Let us first suppose that we evolve the density and velocity fields ρ(x, t) and
v(x, t). At the matching boundary between the fluid and the wave simulation,
we need to reconstruct ψ(x, t) and therefore the phase S(x, t) from the density
ρ(x, t) and the velocity v(x, t). We can reconstruct the phase field S(x, t) by
integrating the velocity field according to

S(x, t) − S(x0, t) =
∫

C
v(x, t) · dx, (233)

where C is a piecewise differentiable curve from x0 to x. The integral is inde-
pendent of the choice of curve since the velocity field is conservative. Eq. (233)
highlights an important difficulty arising when integrating the velocity field. The
integration constant S(x0, t) is itself time-dependent. In order to obtain the phase
at an arbitrary point x, we need to evolve the phase in time at at least one point
x0

15. The choice of this point is arbitrary and numerical errors might depend on
its position. Moreover, it always needs to be located in a region where the fluid
formulation is valid. In other words, it will need to be moved away from regions

15This problem also occurs if we recast the integration problem in the form of a Poisson
equation

∆S = ∇ · v, (234)

with von Neumann boundary conditions at the matching boundary. Since we cannot provide
Dirichlet boundary conditions, the solution will only be determined up to a time-dependent
constant. This constant is necessary to reconstruct the wave function ψ(x, t).
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of vanishing density dynamically. Further, the integration path C will connect all
points in the simulation where we employ the fluid formulation with x0. As a
result, distant regions in the simulation will need to communicate at every time
step. This communication can potentially have a large computational overhead.

5.1.2 Parallel Evolution of the Velocity and Phase Fields

In order to avoid the integration of the velocity field, we can evolve the phase
field S(x, t) in addition to the velocity field. If we treat the velocity field as
fundamental and evolve it by a time step ∆t, the velocity fields at the times t
and t+∆t can be used to update the phase field by treating the Hamilton-Jacobi
equation (22) as an ODE. This approach has the advantage that no integration
of the velocity field is necessary. Further, existing hydrodynamics codes and
ODE solvers can be used for updating both the velocity and density fields. The
disadvantages of this method are the computational and memory overhead of
evolving an additional field as well as the fact that the time evolution of the phase
field at different points decouples. Neighbouring points on a grid are updated via
the velocities at the respective grid points but never communicate directly. Hence,
numerical errors at neighbouring points decouple.

5.1.3 Evolution of the Phase Field

A third approach consists in treating the density and phase fields ρ(x, t) and
S(x, t) as fundamental fields and in evolving them using the Hamilton-Jacobi-
Madelung equations (21) and (22). This allows the unique reconstruction of
the wave function ψ(x, t) without additional computational overhead. At the
same time, it leads to what we call the reverse boundary matching problem in
the following. The velocity v can be easily obtained from the wave function via
differentiation. Yet, the phase is only determined by the wave function up to a
multiple of 2π:

S(x, t) = arctan
(

=(ψ(x, t))
<(ψ(x, t)

)
. (235)

We must therefore determine the correct phase by requiring continuity at the
matching boundary. On a discrete grid, this translates into the requirement that
the phase field S(x, t) must not change by more than 2π between neighbouring
grid points at the matching boundary. In other words, we must resolve the de
Broglie wavelength at the matching boundary in order for the reverse bound-
ary matching problem to admit a unique solution. This immediately shows that
a useful hybrid scheme based on this approach necessarily requires an AMR-
algorithm with at least two refinement levels for the phase equation: An outer
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refinement level where the grid need not resolve the de Broglie wavelength and
an second refinement level where the de Broglie wavelength is resolved and the
reverse boundary matching problem has a unique solution. This concludes our
discussion of the boundary matching problem and sets the stage for the devel-
opment of the hybrid scheme. We first review the basics of computational fluid
dynamics (CFD) and then construct a numerical scheme to solve the Hamilton-
Jacobi Madelung equations.

5.2 Introduction to CFD

The following section introduces the basics of computational fluid dynamics
(CFD) and heavily draws on (Hirsch 2007). There are three main methods for
the discretisation of spatial derivatives in partial differential equations (PDEs):
Finite difference, finite volume and finite element methods. Finite difference
methods work on structured grids by replacing spatial derivatives by discrete
difference expressions between neighbouring grid points. Finite volume meth-
ods discretise the integral form of conservation laws. Lastly, there are finite
element methods that are especially important for unstructured grids. In the
following, we will be concerned with finite difference and finite volume meth-
ods. Jupyter notebooks that can be used to reproduce and interact with many
of the figures in the following sections can be found on github under https://git-
hub.com/KunkelAlexander/fdm-hybrid-scheme/. The easiest way to access them
is via this Binder repository. The notebook accompanying the following section
on the linear advection equation is called advection_widget.ipynb. The note-
book on the SPS is called sps_widget.ipynb.

5.2.1 Finite Difference Method

In this section, we introduce the finite difference method (FDM) by consider-
ing the one-dimensional linear convection equation

ut + aux = 0, (236)

with initial conditions and boundary conditions

u(x, t = 0) = u0(x), 0 ≤ x ≤ L, (237)
u(x = 0, t) = u(x = L, t), t ≥ 0, (238)
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as a model equation for linear conservation laws. It admits the solution u(x, t) =
u0(x − at) that is constant along any curve in the x-t-plane 16. We start by
discretising the space and time dimensions. We choose a uniform grid with N

points and constant grid spacing ∆x for the spatial dimension and subdivide the
time axis into time intervals ∆t:

xi ≡ i∆, tn = n∆t, uni = u(i∆x, n∆t), (239)

where space positions are denoted by the subscript i and time levels by the su-
perscript n. Numerical schemes for differential equations as well as the solutions
they produce must be assessed on the basis of three main concepts: consistency,
stability and convergence. Consistent numerical schemes must tend to the differ-
ential equation when time and space steps tend to zero. The numerical errors of a
stable numerical solutions are bounded for finite ∆t and ∆x when the number of
iterations n tends to infinity. A convergent numerical solution tends to the exact
mathematical model when time and space steps tend to zero. The equivalence
theorem of Lax then states that for a well-posed initial value problem and a con-
sistent discretisation scheme, stability is a necessary and sufficient condition for
convergence. In the following, we shall therefore always check numerical schemes
for consistency as well as stability. Let us discretise the spatial derivatives in Eq.
(236) via the finite difference

∂x = u(x+ ∆x) − u(x)
∆x . (240)

Taylor expanding u(x+ ∆x), we find

u(x+ ∆x) − u(x)
∆x = ux(x) + ∆x

2 uxx(x) = ux(x) + ∆x. (241)

This shows that the introduction of the finite difference leads to a truncation error,
that is, a difference between the numerical scheme and the underlying differential
equation. This truncation error is proportional to the term ∆x

2 uxx(x) to lowest
order in ∆x. This tells us that the result numerical scheme is consistent and
first-order accurate in space 17. Taylor expansion analysis shows the following
expressions for the forward, backward and central differences ∂fx , ∂bx are first-,

16In fact, first-order PDEs can be reduced to ODEs on curves on which their solutions are
constant. The so-called method of characteristics permits the solution of nonlinear first-order
PDEs. For a discussion see appendix A.6.

17Apart from the truncation error, numerical schemes exhibit other discretisation errors,
iteration errors from the solution of linear or nonlinear systems of equations as well as floating
point errors.
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first- and second-order respectively:

∂fxu
n
i ≡

uni+1 − uni
∆x , ∂bxu

n
i ≡

uni − uni−1
∆x , ∂cxu

n
i ≡

uni+1 − uni−1
∆x . (242)

Replacing the spatial derivative in the linear advection equation by the second-
order central discretisation ∂cx, we find the ODE

∂tu = a
ui+1 − ui−1

∆x . (243)

This separation of temporal and spatial discretisation of a PDE is called method
of lines. In the next step, we replace the time derivative by a suitable finite
difference. If we evaluate the right-hand side (RHS) of Eq. (243) at the time
level n, we find the explicit Euler method:

un+1
i = un + a∆tu

n
i+1 − uni−1

2∆x . (244)

In explicit methods, the matrix of the unknown variables at the new time is
a diagonal matrix while the RHS of the system depends only on the variables
at previous times. Explicit methods for the linear advection equation require a
condition on the maximum time step size of the form

CCFL =
∣∣∣∣∣a∆t
∆x

∣∣∣∣∣ ≤ 1, (245)

that is called Courant-Friedrichs-Lewy (CFL) condition. The CFL condition en-
sures that the domain of dependence of the numerical discretisation of an explicit
time discretisation contains the true physical domain of dependence by reflecting
the finite propagation speed a of solutions to the linear advection equation. More
generally, it can be shown that CFL conditions ensure that numerical causality
corresponds to physical causality as ∆x tends to zero (Ajaib 2013). Instead of
evaluation the RHS of Eq. (243) at the time level n, we can evaluate it at the
time level n+ 1 to obtain the implicit Euler method

un+1
i = un + a∆tu

n+1
i+1 − un+1

i−1
2∆x . (246)

In implicit methods, the matrix to be inverted is not diagonal since more than one
set of variables is unknown at the same time level. Implicit methods therefore
require the solution of potentially nonlinear systems of equations at every time
step. Their advantage is that they circumvent the CFL condition by using the en-
tire numerical domain of dependence thereby including the true limited physical
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domain of dependence. In the following, we shall mostly consider explicit meth-
ods because implicit methods have a high computational cost in cosmological
simulations. Fig. 38 compares the numerical evolution of a top hat propagating
into positive x-direction according to the explicit Euler method in Eq. (244) with
its analytical time evolution. The numerical solution does clearly not describe
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Figure 38: Central difference scheme (Eq. (244)) for the time evolution of a top hat according
to the linear advection equation (236) with a = 1. The simulation uses the simulation para-
meters L = 5 and ∆x = 5/64. The time step ∆t is set according to the CFL condition Eq.
(245). The initial conditions are taken as u(x, t = 0) = 1 for 0.5 < x < 1.5 and 0 otherwise.

the analytical solution well. What went wrong? Clearly, the scheme Eq. (244)
is not convergent, hence not stable. We know that the analytical solution to the
linear advection equations travels at a finite propagation speed a. One reason
for the failure of the central difference method is that the information needed to
update uni is derived from values of u in both upstream and downstream direc-
tions. The upstream direction is x < xi for a > 0 since that is the direction from
which the flow comes. The downstream direction is x < xi, that is, the direction
where the steam goes. Anything that happens to the flow downstream from xi

should never affect the value of q(xi) since information flows downstream. One
can also show that the central difference method is not stable by performing a
von Neumann analysis: One Fourier transforms the truncation error assuming
periodic boundary conditions and then studies the time evolution of the Four-
ier modes. Fortunately, we can obtain a stable scheme by using forward and
backward derivatives to discretise the linear advection equation as

un+1
i = un + ∆t

(
min(a, 0)∂bxuni + max(a, 0)∂fxuni

)
. (247)
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Such a form of discretisation is called upwind discretisation and lets the numerical
scheme reflect the physical domain of dependence of the wave-like solutions of the
advection equation. Fig. 39 compares the upwind discretisation of the linear ad-
vection equation with its numerical solution. We observe that the upwind scheme
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Figure 39: Upwind scheme (Eq. (247)) for the time evolution of a Gaussian wave packet
according to the linear advection equation (236) with a = 1. The simulation parameters are
set as in Fig. 38.

describes the propagation of the top hat well. However, it is rather diffusive at
the discontinuities of the top hat. This is because the upwind discretisation Eq.
(247) is only first-order in space and time. As a general rule, first-order schemes
tend to be very diffusive and are therefore often unacceptable for practical applic-
ations. We shall always seek methods of at least second order in the following. A
possible option for a higher-order scheme for the linear advection equation is the
Lax-Wendroff scheme:

un+1
i = uni − ∆t

2∆xa(uni+1 − uni−1) + ∆t2
2∆x2a

2(uni+1 − 2uni + uni−1) (248)

Truncation error analysis shows that it is second-order in both time and space.
Further, it stabilises the central difference scheme given in Eq. (244) by adding
additional artificial viscosity in the form of a diffusion term:

∆u = 1
∆x2 (uni+1 − 2uni + uni−1) + O(∆x2). (249)

In fact, we observe that the truncation error in the Taylor expansion of u(x+∆x)
Eq. (241) at order ∆x was also proportional to a diffusion term. Diffusion gen-
erally tends to stabilise numerical schemes as can be shown by von Neumann
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analysis. This explains why the upwind scheme works so well: The upwind dis-
cretisation of the derivative in the linear advection equation has the effect of
adding artificial diffusion to the central discretisation and therefore stabilises the
scheme. Fig. 40 shows the evolution of the top hat according to the Lax-Wendroff
scheme. Compared to the upwind scheme, it is less diffusive, but exhibits unphys-
ical wiggles at the discontinuities of the top hat. This demonstrates a fundamental
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Figure 40: Lax-Wendroff scheme (Eq. (248)) for the time evolution of a Gaussian wave packet
according to the linear advection equation (236) with a = 1. The simulation parameters are
set as in Fig. 38.

problem of linear higher-order schemes: They introduce unphysical oscillations
at discontinuities. The absence of unphysical oscillations can be characterised by
the notion of monotonicity for linear differential equations and the Total Vari-
ation (TVD) property in the nonlinear case. The total variation quantifies the
oscillations in a function

TV (u(t)) =
∫ ∞

−∞
|u′(x, t)|dx. (250)

For scalar, possibly nonlinear conservation laws, the total variation of the exact
solution is a non-increasing function of time

TV (u(t2)) ≤ TV (u(t2)), ∀t2 ≥ t1. (251)

This implies that the solution u does not develop any new local extra over time
and that the magnitude of existing extrema does not increase 18. This excludes

18The TVD theory only applies to scalar conservation laws in one spatial dimension. Empiric-
ally, however, it has been shown to be very successful even for systems of nonlinear conservation
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the formation of local instabilities such as unphysical oscillations because they
increase the total variation. Therefore, numerical schemes aim to implement the
TVD condition described by Eq. (251) in the discrete case. We call a numerical
scheme TVD iff

TV (un+1) ≤ TV (un), ∀n, (252)

where
TV (un) =

∞∑
i=−∞

|uni+1 − uni |. (253)

Godunov’s theorem now states that all linear TVD schemes for the convection
equation are necessarily first-order accurate. The only way out is to create non-
linear higher-order schemes, even for linear conservation laws. This leads to the
introduction of slope limiters that control the process of generation of over- and
undershoots preventing gradients from exceeding certain limits. Let us explain
this at the example of a second-order backward difference discretisation of the
linear advection equation for a > 0:

∂tu = − a

2∆x(3ui − 4ui−1 + ui−2) = − a

2∆x [−4(ui−1 − ui) + (ui−2 − ui)]. (254)

We can express a general linear explicit scheme with two time-levels as

un+1
i = uni +

∑
j

bj(uni+j − uni ), (255)

and the TVD condition is satisfied if bj ≥ 0 for all j. Hence Eq. (254) is clearly
not TVD because of the negative coefficient in front of ui−1. We can rewrite Eq.
(254) as

∂tu = − a

∆x [ui − ui−1 + 1
2(ui − ui−1) − 1

2(ui−1 − ui−2)], (256)

and multiply the non-monotone terms by the slope limiter ψ

∂tu = − a

∆x [ui − ui−1 + 1
2ψ(ri)(ui − ui−1) − 1

2ψ(ri−1)(ui−1 − ui−2)], (257)

where
ri = ui+1 − ui

ui − ui−1
(258)

denotes the ratio of subsequent gradients. The spatial part of the scheme (257)
can be shown to be monotone if ψ(r) ≥ 0 for r ≥ 0, ψ(r) = 0 for r ≤ 0 and
0 ≤ ψ(r) ≤ 2r. Additionally, one demands ψ(r)

r
= ψ(1

r
) which implies that

laws.
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forward and backward gradients are treated the same way. Moreover ψ(1) = 1
which is a necessary requirement for second-order accuracy on smooth solutions.
Intuitively, limiter functions prevent unphysical oscillations by limiting sharp
gradients thereby reducing higher-order schemes to first-order accuracy locally.
At the same time, their effect on smooth parts of the solution should be as small
as possible. Three often-used limiters are the Van Albada limiter, the minmod
and the Superbee limiter:

ψvanAlbada(r) = r2 + r

1 + r2 , (259)

ψminmod =
 min(r, 1) if r ≥ 0

0 if r ≤ 0
, (260)

ψSuperbee = max(0,min(2r, 1),min(r, 2)). (261)

Fig. 41 shows the evolution of the top hat according to the second-order upwind
scheme with the Superbee limiter. The discontinuity is sharply resolved and
the schemes is not dispersive 19 As for the time discretisation in the method of
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Figure 41: Second-order upwind scheme defined in Eq. (257) with the Superbee limiter defined
in Eq. (261) for the time evolution of a Gaussian wave packet according to the linear advection
equation (236) with a = 1. The simulation parameters are set as in Fig. 38.

lines, a popular choice is the class of TVD, high-order Runge-Kutta (RK) time
discretisations. Their derivation starts with the assumption that the first-order
forward Euler time discretisation is stable with a suitable time step restriction

19Note, however, that in general slope limiting can introduce unwanted artifacts into numer-
ical solutions turning sine waves into square wave forms. This can be seen in the interactive
notebook accompanying this chapter.
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t < t0, given by the CFL condition Eq. (245) in the above case (Shu 2007). They
then require a time step restriction of the form

∆t ≤ c∆t0, (262)

where c is the CFL coefficient of the TVD method. Shu (2007) lists a number of
higher-order TVD RK-methods. In the following, we shall use the second-order
method

u(1) = un + ∆tL(un, tn),

un+1 = 1
2u

n + 1
2u

(1) + 1
2∆tL(u(1), tn + ∆t),

(263)

and the fourth-order method found by Spiteri and Ruuth (2002) using numerical
optimisation for a large CFL coefficient

u(1) = un + 0.39175222700392∆tL(un, tn)
u(2) = 0.44437049406734un + 0.55562950593266u(1)

+ 0.36841059262959∆tL(u(1), tn + 0.39175222700392∆t)
u(3) = 0.62010185138540un + 0.37989814861460u(2)

+ 0.25189177424738∆tL(u(2), tn + 0.58607968896780∆t)
u(4) = 0.17807995410773un + 0.82192004589227u(3)

+ 0.54497475021237∆tL(u(3), tn + 0.47454236302687∆t)
un+1 = 0.00683325884039u+ 0.51723167208978u(2)

+ 0.12759831133288u(3)

+ 0.08460416338212∆tL(u(3), tn + 0.47454236302687∆t)
+ 0.34833675773694u(4)

+ 0.22600748319395∆tL(u(4), tn + 0.93501063100924∆t).

(264)

They have the respective CFL coefficients c = 1 and c = 1.508 in Eq. (262).
The latter is remarkable since it implies that the fourth-order RK scheme allows
a more lenient time step condition than the forward Euler method which partly
offsets the cost of having a five-stage integrator. In the above examples, we
always assumed periodic boundary conditions. One way to boundary conditions
in finite difference methods is the use of ghost cells. Ghost cells extend the
regular simulation grid by additional cells that provide the boundary conditions
for the finite difference stencils at the edge of the simulation volume or of different
simulation patches. This concludes our discussion of finite difference schemes and
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we will now turn towards finite volume schemes.

5.2.2 Finite Volume Method

This discusses the finite volume method (FVM). It allows the numerical solu-
tion of nonlinear conservation laws of the form

∂tu+ ∇ · F (u) = 0, (265)

where u is a scalar field. This section heavily draws on the lecture notes by
Dullemond and Wang (2009) and the introductions to FVM by LeVeque (2002)
and Hirsch (2007). Finite volume schemes divide the spatial domain into small
control volumes Ω known as cells. They go on to solve the integral version of the
conservation law

∂t

∫
Ω
u dx +

∮
S

F · dS = 0. (266)

The time variation of the average of u inside the control volume only depends on
the surface value of the fluxes. Each cell exchanges the conserved quantity with
neighbouring cells via fluxes at the cell boundaries. Finite volume schemes mimic
this behaviour on a discrete level. This makes finite volume schemes manifestly
conservative which has the advantage that they yield the unique physical solution
of a PDE even in the presence of shocks.

In the following we will only consider the case of one-dimensional scalar laws,
but the discussion can be easily extended to systems of nonlinear conservation
laws in an arbitrary number of spatial dimensions. As in the finite difference
case, we start by discretising the time and space dimensions on a uniform grid
with N points per spatial dimension and subdivide the time axis into constant
time intervals ∆t. In addition, we define the cells Ωi = [xi− 1

2
, xi+ 1

2
] at every grid

point. The cell centres are located on the grid and the respective cell faces Si
are located between the grid points at xi− 1

2
and xi+ 1

2
. We define the numerical

approximation ūi to the cell-averages in the cell Ωi as

ūi(t) = 1
∆x

∫
Ωi

dxu(x, t) = 1
∆x

∫ x
i+ 1

2

x
i− 1

2

u(x, t)dx. (267)

The conservation law can now be expressed in terms of the cell averages as

∂tūi(t) =
F (u(xi− 1

2
, t)) − F (u(xi+ 1

2
, t))

∆x . (268)

Using a suitable time discretisation, we obtain an explicit numerical scheme for
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the cell averages
ūi+1 = ūi − ∆t

∆x(F n+ 1
2

i− 1
2

− F
n+ 1

2
i− 1

2
), (269)

where we evaluate the fluxes at the time t = (n + 1
2)∆t . Eq. (269) can in fact

conserve the quantity u if the flux approximations at the cell-faces are consistent.
A consistent flux discretisation at a given cell-face must be independent of the
cell considered 20. For a consistent flux approximation, a theorem of Lax and
Wendroff implies that if the solution ui of the discretised equation (269) converges
boundedly to some function u(x, t) when ∆x, ∆t tend to zero, then u(x, t) is a
weak solution of Eq. (265) (Hirsch 2007, p.209). The properties of a given finite
volume scheme now depend on how we approximate the fluxes F n

i− 1
2

at the cell
faces. In the following, we give explicit flux approximation for the advection
equation with non-constant advection velocity

∂tu+ ∂x(v(x) · u) = 0, (270)

where F (u) = v(x) · u. As a first approximation, we can assume the exact
solution u(x) in the cell Ωi to coincide with its average ūi. This approach is called
Godunov’s method. The simplest flux-conserving scheme based on Godunov’s
method is the donor-cell scheme. The average interface state is simply

ū
n+ 1

2
i+ 1

2
=


ūni , for vi+ 1

2
> 0,

ūni+1, for vi+ 1
2
< 0,

(271)

and the donor-cell interface flux is given by

F
n+ 1

2
i+ 1

2
= vi+ 1

2


ūni , for vi+ 1

2
> 0,

ūni+1, for vi+ 1
2
< 0.

(272)

The image behind this scheme is as follows: For positive velocities the quantity
at the cell center ui is carried to the cell edge by the velocity at the left cell edge
vi− 1

2
. For negative velocities, it is the velocity at the right cell edge vi+ 1

2
that

carries ui away. Evaluating the flux as a product of the advected quantity u and
the velocity v at the cell edge, Fi+ 1

2
= vi+ 1

2
ui+ 1

2
, does not conserve the advected

quantity. For a constant velocity field, the donor-cell scheme just reduces to the
upwind scheme defined in Eq. (247).

20In practice, this requirement can be violated in subtle ways, for instance, if a higher-order
flux discretisation gives different approximation polynomials in neighbouring cells.
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Remark 2: Riemann problem

Godunov’s method defines a so-called Riemann problem at the cell faces.
A Riemann problem is an initial value problem where the initial conditions
are prescribed by a piecewise constant function with a single discontinuity.
At the cell face Si+ 1

2
at the time level n it can be stated as

∂tu+ ∂xF (u) = 0, (273)

u0(x) =

ūi+1, x < xi+ 1
2
,

ūi, x ≥ xi+ 1
2
.

(274)

For a sufficiently small time step, the Riemann problems at each cell face
become independent and one can derive an expression for the cell face flux
by solving them. In the case of the linear advection equation, we can
easily find an analytical solution to the cell face Riemann problem. In
general, its solution is either complicated, as for the ideal fluid equations,
or impossible, as in the case of magneto-hydrodynamics. We will therefore
settle with approximating the cell-interface fluxes.

Godunov’s method yields a first-order method in space and time: We assume
the solutions to be constant in each cell and the fluxes to be constant over each
time step. We can improve Godunov’s method by employing better approxima-
tions of the solution within the cell. We can assume that the state within each cell
is a linear function of position. Such a state is called piecewise linear. More gen-
erally, the way one approximates the state inside the cell is called subgrid model.
An important class of higher-order versions of Godunov’s method that commonly
use linear or parabolic subgrid models are Monotone Upstream Schemes for Con-
servation Laws (MUSCL), named after the original method of this kind proposed
by Leer (1979). Within each cell, the state at the beginning of the time step is
given by

u(x, t = tn) = ūni + σni (x− xi) for xi− 1
2
< x < xi+ 1

2
, (275)

where σni is a suitably chosen slope. The flux at the cell-interface is then given
by

Fi+ 1
2
(t) = max(0, vi+ 1

2
)ūni + min(vi+ 1

2
, 0)ūni+1

+ vi+ 1
2
σni

(1
2∆x− vi+ 1

2
(t− tn)

)
,

(276)
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which after averaging over a time step ∆t reads

F
n+ 1

2
i+ 1

2
≈ 〈Fi+ 1

2
(t)〉 = max(0, vi+ 1

2
)ūni + min(vi+ 1

2
, 0)ūni+1

+ 1
2vi+

1
2
σni
(
∆x− vi+ 1

2
∆t
)
.

(277)

If we now choose a central difference approximation σni = ūni+1−ūni−1
2∆x for the slope,

we obtain a method that is second-order in space. But as in the finite difference
case, such a scheme leads to unphysical oscillations. We need to introduce limiters
to avoid these unphysical oscillations. This time, instead of limiting the slopes
σni , we limit the corresponding time-averaged fluxes and obtain

F
n+ 1

2
i+ 1

2
= max(0, vi+ 1

2
)ūni + min(vi+ 1

2
, 0)ūni+1

+ 1
2
∣∣∣vi+ 1

2

∣∣∣ (1 −
∣∣∣∣∣vi+ 1

2
∆t

∆x

∣∣∣∣∣
)
ψ(rni+ 1

2
)(ūni+1 − ūni ),

(278)

where ψ is a slope limiter (i.e. the limiters defined in Eqs. (261), (260) or (259))
and

rni+ 1
2

=


ūni − ūni−1
ūni+1 − ūni

, for vi+ 1
2

≥ 0,

ūni+2 − ūni
ūni+1 − ūni

, for vi+ 1
2

≤ 0.
(279)

The resulting scheme is the donor-cell scheme with an additional correction that
makes it second-order. The MUSCL-type schemes together with higher order
TVD RK time discretisations will be our method of choice for solving the con-
tinuity equation because they are higher-order, easy to implement and do not
require the formal solution of the Riemann-problem at the cell interfaces. This
concludes our discussion of finite volume schemes as well as the brief introduction
into some important concepts in CFD.

5.3 Simulating the Hamilton-Jacobi Equation

This section is based on (Shu 2007) and discusses numerical strategies for the
solution of Hamilton-Jacobi (HJ) equations of the form

∂S(x, t)
∂t

+H (Sx1 , Sx2 , . . . , Sxd) = 0, (280)

S(x, 0) = S0(x), (281)

where Sxi denotes a partial derivative of S w.r.t. to the coordinate xi and h is a
Lipschitz continuous function. We introduce vi := Sxi and take the gradient of
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the Hamilton-Jacobi equation to see that the dynamics of v are governed by the
conservation law

vt +H(v)x = 0, (282)
v(x, 0) = v0(x). (283)

This connection between HJ equations and conservation laws can be used to
develop strategies for the numerical solution of the HJ equation and leads from the
HJ-Madelung equation (22) to the fluid equations (26). In general, the solutions
v of the conservation law Eq. (282) will be bounded and have a bounded total
variation, but develop discontinuities. These discontinuities translate into kinks
for solutions of the HJ equation . The unique, physical (in the context of classical
mechanics) weak solution of the HJ equation is called viscosity solution and can
be singled out by certain inequalities. In the following, we consider numerical
schemes that are guaranteed to converge to the viscosity solution for ∆x,∆t → 0.
Let us consider a uniform, one-dimensional grid with constant grid spacing ∆x.
We further introduce the forward and backward velocities

vi+ 1
2

= Si+1 − Si
∆x , vi− 1

2
= Si − Si−1

∆x . (284)

First-order monotone schemes are defined as schemes of the form

∂tSi = −F
(
vi+ 1

2
, vi− 1

2

)
. (285)

The argument function F (a, b) is a monotone flux that is characterised by the
following properties:

• Lipschitz continuity in both arguments;

• It is a non-decreasing function in a and non-increasing function in b;

• Consistency with the physical flux: F (a, a) = H(a).

Monotone schemes are guaranteed to converge to the viscosity solution of the
HJ equation and are numerically stable. They are our method of choice for
discretising the convective term in the HJ-Madelung equation Eq. (22). Note,
however, that the latter is not an HJ equation in the sense of Eq. (282) because of
the coupling to the continuity equation and the quantum pressure and potential
terms. This has the advantage that we do not worry too much about discon-
tinuous derivatives of S (shocks in the Madelung fluid) because of the diffusive
nature of the quantum pressure term. At the same time, we have no theoretical
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convergence guarantees for the resulting numerical scheme and need to rely on
numerical experimentation to assess its properties. Examples of monotone fluxes
include the Godunov flux

F (a, b) =

mina≤x≤bH(x) a ≤ b

maxb≤x≤aH(x) a > b,
(286)

as well as the Lax-Friedrichs flux

F (a, b) = 1
2[H(a) +H(b) − α(b− a)], (287)

where α = maxx |H ′(x)|. They both apply to a general Hamiltonian. There
are other simple monotone fluxes which only apply to Hamiltonians of a certain
form. If the Hamiltonian is of the form H(v1, . . . , vn) = f(v2

1, . . . , v
2
n) where f is

a monotone function of each argument, one can use the Osher-Sethian flux

ĤOS(v1,i− 1
2
, v1,i+ 1

2
, . . . , vn,i− 1

2
, vn,i+ 1

2
) = F (v̄2

1,i, . . . , v̄
2
n,i), (288)

where v̄i2 are implemented as

v̄i
2 =

(min(vi− 1
2
, 0))2 + (max(vi+ 1

2
, 0)2), if f non-increasing in v̄i

2

(min(vi+ 1
2
, 0))2 + (max(vi− 1

2
, 0)2), if f non-decreasing in v̄i

2.

(289)
The Osher-Sethian-flux applies to the convective term in the HJ-Madelung equa-
tion and will be used in the following since it is purely upwind and easy to
implement. Note that the resulting scheme for a regular HJ equation requires a
CFL condition of the form (Osher and Shu 1991):

∆t ≤ ∆x
2∑i |∂iH|

, (290)

where ∆t ≤ ∆x
2
∑

i
|vi|

for H = ∑
v2
i /2.

5.4 Simulating Gravity

By now, we have almost all ingredients to describe numerical schemes for
solving the HJ-Madelung equations. We know how to solve the continuity and
a generic HJ equation. However, the HJ equation (22) involves two additional
terms: the quantum pressure term and the potential term. In this section, we
discuss how to best describe time evolution with the gravitational potential and
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draw on (Zimmermann 2020, p. 62ff) and Mocz et al. (2017). We start by going
back to the wave formulation of the SPS and consider it in the form given in Eqs.
(18) and (19):

i~∂tψ(x, t) =
(

− ~2

2m∆ +mφ(x, t)
)
ψ(x, t), (291)

∆φ(x, t) = 4πGaρbδ(x, t), (292)

If we wanted to explicitly evolve the wave equation, we would have to compute
the time-ordered evolution operator Û(t, t′)

Û(t, t′) = T̂ e
i
~

∫ t′
t

dsĤ(s), (293)

where T̂ is the time-ordering symbol. The explicit time-dependence of the Hamilto-
nian via the gravitational potential makes the action of the time-ordering symbol
non-trivial even for small time steps ∆t. Therefore, one has to find an efficient
approximation for the time-ordered evolution operator Û .

What we can find are the time evolution operators ÛK and ÛV for the kinetic
sub-Hamiltonian

ĤK = − ~2

2m∆, (294)

and the potential sub-Hamiltonian

ĤV = mφ(x, t), (295)

where Ĥ = ĤK + ĤV :

ÛK(∆t) = exp
(

−i ~
2

2mk2∆t
)
, (296)

ÛV (∆t) = exp (−imφ∆t) . (297)

The operator ÛK is exact because the kinetic Hamiltonian naturally does not
have an explicit time dependence. The operator ÛV also is exact even though
the potential Hamiltonian seemingly explicitly depends on time via the gravita-
tional potential. The reason is that the action of the gravitational potential only
rotates the phase, but conserves the density. Hence, the potential Hamiltonian
is also time-independent as long as we can ignore the action of the kinetic sub-
Hamiltonian for small time steps ∆t. We can therefore use ÛK and ÛV to find
approximations of the exact time evolution operator. The time evolution of the

Page 94



5.4 Simulating Gravity 5 HYBRID FDM

wave function for a small time step ∆t is given by

ψ(x, t+ ∆t) = exp
[
i∆t
~

(
~2

2m∆ − m

2 φ(x, t+ ∆t) − m

2 φ(x, t)
)]

ψ(x, t). (298)

The exponential can be simplified using the Baker-Hausdorff-Campbell formula

ψ(x, t+ ∆t) = exp
(

−im∆t
2~ Φ(x, t+ ∆t)

)

× exp
(
i~∆t
2m ∆

)

× exp
(

−im∆t
2~ Φ(x, t)

)
ψ(x, t)

+ O(∆t)3.

(299)

We can read off a second-order time-accurate approximation of the exact time
evolution operator as

ÛK+V (∆t) = ÛK

(1
2∆t

)
◦ ÛV (∆t) ◦ ÛK

(1
2∆t

)
+ O(∆t3). (300)

Because of the close resemblance to the kick-drift-kick time evolution in N -Body
simulations, we will refer to this scheme as kick-drift-kick scheme in the following.
The kick corresponds to the application of the potential operator and the drift
is the application of the kinetic operator. The kick-drift-kick scheme is time-
symmetric and norm-preserving as it is the composition of unitary maps. In fact,
we can further simplify the time evolution operator by recognising that the kicks
leave the density and therefore the gravitational potential unchanged. They can
be combined as

ÛK+V (∆t) = ÛK (∆t) ◦ ÛV (∆t) + O(∆t3), (301)

after we initialise the algorithm with an initial kick by half a time step. As a
result, one needs to solve the Poisson equation only once per time step. In the
context of the HJ-Madelung equations, the kinetic term in the Schrödinger equa-
tion corresponds to the combined evolution of the continuity and HJ equations
including the quantum pressure but excluding the potential term. Including the
quantum pressure term in the kick step as in (Li, Hui and Bryan 2018, p. 18)
does not lead to a second-order time-accurate scheme since the quantum pressure
is part of the drift operator.
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5.5 Simulating the Schrödinger Equation

This section reviews the two main approaches for solving the Schrödinger
equation in the context of the SPS: finite difference and pseudospectral methods.
The code presented in (Schive, Chiueh and Broadhurst 2014) uses a modification
of an explicit finite difference method known in the literature as forward-in-time-
centered-in-space (FTCS). The kinetic operator is discretised using a central finite
difference such as

∆ψ = ψi+1 − 2ψi + ψi+1

∆x2 , (302)

and the discretisation in time is performed using a second-order leapfrog integ-
rator. One can easily choose arbitrarily high-order central differences in this
method. In practice, one is limited by several factors: Higher-order differences
increase the number of required floating point operators and need bigger ghost
boundaries thereby also increasing the memory requirements of the scheme. In
addition, they need a stricter CFL-condition of the form

∆t ≤ min
(
CCFL,K

ma2

~
∆x2, CCFL,V

~
a |φmax|

)
, (303)

where CCFL,K and CCFL,V are constants of order unity constant that depend
on the details of the discretisation (Schwabe, Niemeyer and Engels 2016). This
condition on the time step ensures that the phase rotation of the wave function in
one time step is smaller than 2π. Another way to look at the relation between the
temporal and spatial step sizes is to realise that the SPS depends on higher-order
derivatives and admits whistler-type waves with ω = νk2. This generally implies
a time step condition of the form ∆t ∝ ∆x2 (Hopkins 2018).

Apart from finite differences, the pseudospectral approach is a well estab-
lished and highly accurate method of discretising the Schrödinger equation in the
spatial domain. It is suitable for periodic boundary conditions and applications
for solving the SPS can be found in (Mocz et al. 2017) or (May and Springel
2021), for instance. The basic idea of this method is very simple: We take the
discrete Fourier-transform of ψ, apply the Laplace operator by multiplying with
k2 in Fourier space and take the inverse Fourier transform. For smooth ψ(x, t)
we achieve spectral convergence, that is, faster than any polynomial. This is pos-
sible because unlike finite difference methods which only use neighbouring grid
points, the Fourier transform uses the entire computation domain at once. The
overall computational work is still of order O(N logN) thanks to the fast Fourier
transform algorithm. This method, of course, only works for the wave formula-
tion of the SPS and does not integrate well with other finite difference or finite
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volume methods. Using a Fourier transform, we can similarly solve the Poisson
equation for periodic boundary conditions 21. Combining the solution of the Pois-
son equation and the Schrödinger equation via a fast Fourier transform with the
kick-drift-kick scheme for time evolution, we obtain the algorithm presented by
Mocz et al. (2017). We will refer to it as reference wave scheme in the following
und use it to compute reference solutions in all simulations with gravity where
no analytical solutions to the SPS exist.

5.6 The Phase Scheme

At this point, we are ready to present the scheme that we use to solve the
HJ-Madelung equations (22) and (21) in the hybrid scheme. In the following, we
will simply refer to this higher-order scheme as phase scheme. In order to account
for cosmological expansion, we perform the substitutions dt → a2dt ≡ dτ and
ρ → a−3ρ and normalise the comoving mass density ρ to the comoving background
density ρb:

m

~
∂τρ+ ∇ · (ρ∇S) = 0, (304)

m

~
∂τS + 1

2 (∇S)2 + φS − 1
2

∆√
ρ

√
ρ

= 0, (305)

∆φ− 4πGa (ρ− 1) = 0. (306)

The system of equations consists of a continuity equation coupled to a HJ equation
with additional quantum pressure and potential terms. Because of the dispersive
nature of the quantum pressure term, the continuity equation does not develop
shocks in theory. Neither does the HJ equation develop kinks. Yet, the quantum
pressure term is not positive-definite and can lead to negative densities. Moreover,
limited resolution and phase jumps by multiples of 2π can lead to shock-like
solutions in practice. In our numerical experiments, the only way to achieve a
stable higher-order scheme was to use shock-capturing schemes for evolving the
continuity equation and the convective term of the HJ 22. We start by describing
the design of the phase scheme and then go on to study its stability, accuracy
and limitations using a series of test cases.

21Different boundary conditions can in fact be implemented by computing the convolution
with a modified Green’s function.

22An alternative approach to evolve the phase field S(x, t) consist in solving the convective
equations (52). A simple central finite difference discretisation for the diffusion terms and
upwinding for the convection terms did, however, not yield a stable scheme for high Peclet
numbers. In cosmological simulations, the scheme tended to fail once the formation of halos
set in.

Page 97



5.6 The Phase Scheme 5 HYBRID FDM

5.6.1 Design

We evolve the continuity equation using a MUSCL scheme with linear subgrid
model according to Eq. (278) together with the van Albada limiter

ψ(r) = r2 + r

1 + r2 , (307)

where r is the ratio of subsequent gradients. As for the HJ scheme, we use a finite
difference scheme. The convection term is discretised according to Eq. (289) with
the Sethian-Osher flux. The velocities at the cell faces are then computed as
slope-limited finite differences using the van Albada limiter. A more detailed
analysis of the impact of different limiters can be found in appendix A.7. We
treat the cell averages ρ̄ in the finite volume scheme as point values ρ in the
discretisation of the quantum pressure term. Technically, we use the MUSCL
scheme as conservative finite difference method and not as finite volume scheme.
This has the consequence that the maximum order of accuracy we can reach
with the linear subgrid MUSCL scheme is second order (Nishikawa 2020). The
quantum pressure term is discretised as

∆√
ρ

√
ρ

=
(1

2∆ log(ρ) + 1
4 (∇ log(ρ))2

)
, (308)

with second-order central finite differences for both the gradient operator and the
Laplacian. Fourth-order central differences did not improve the behaviour of the
scheme in most test cases and actually required smaller time steps in some. The
resulting semi-discrete scheme is discretised with the fourth-order RK method
described in Eq. (264). The second-order discretisation described in Eq. (263)
also works well, but required a more stringent CFL condition in some test cases.
For including the effect of the gravitational potential, we adopt the kick-drift-
kick approach described in Eq. (300) together with a pseudospectral method for
solving the Poisson equation. In all runs, the time steps were chosen such that
they fulfill the CFL condition

∆τ ≤ min
[
CD

m

~
∆x2, CK∆x m

2~∑3
i=1 |∂iS|

, CV
~

|φmax|

]
, (309)

where CD = 1
6 , CK = 0.5 and CV = 2π ·0.3 as in the Madelung fluid simulations in

(Schwabe, Niemeyer and Engels 2016) and the wave simulation in (Schive, Chiueh
and Broadhurst 2014). The exact value of CD depends on the time discretisation
used. Note that these values are purely empirical because the HJ-Madelung
equations are nonlinear and one can, in general, not derive analytical conditions
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on the time steps in the nonlinear case.

5.6.2 Testing and Validation

In this section, we verify the Python-implementation of the phase scheme
that can be found in the github repository accompanying this chapter. It heavily
relies on the excellent Scipy- and Numpy-libraries (Harris et al. 2020; Virtanen
et al. 2020). We conduct a series of one- and two-dimensional tests against
analytical solutions of the Schrödinger equation and compare the phase scheme
to numerical solutions of the SPS computed with the reference wave scheme. In
addition to mass conservation, which is guaranteed up to machine precision by
the finite volume scheme, we monitor conservation of the energy as given in Eq.
(47):

E =
∫ [

~2

2m2 [∇ψ]2 + 1
2φ [ψ]2

]
d3x (310)

=
∫ ~2

2m2 (∇√
ρ)2 d3x+

∫ ρ

2v
2d3x+

∫ ρ

2φd3x. (311)

Moreover, we numerically assess the accuracy of the resulting scheme by studying
the truncation error of the density field in the L1-norm. For comparison, we also
implemented a first-order version of the phase scheme without slope limiters.
It uses the donor-cell scheme described in Eq. (272) to evolve the continuity
equation and the Osher-Sethian-flux with first-order finite differences to evolve
the phase equation. Apart from this difference, the first-order and higher-order
phase schemes are identical. We assume periodic boundary conditions, set ~

m
= 1

and turn off gravity G = 0 and cosmological expansion a = 1 unless denoted
otherwise. The tests 1, 2 and 4 are taken from (Li, Hui and Bryan 2018).

Animations of the 1D and 2D tests are available on github. They are also
linked with the figures in the following section. Simply click on the figures to
view the animations.

Test 1: Standing Gaussian Wave Packet (1D)

In the first test, we initialise the simulation with a solution to the free 1D
Schrödinger equation: the stationary Gaussian wave packet described in Eq. (60)

ψ(x, t) =
√√√√ 1
α + i~t

m

exp
(

− (x− x0)2

2(α + i~t
m

)

)
. (312)

Fig. 42 compares the numerical solution obtained using the phase scheme with
the analytical solution. The phase S correctly evolves into the parabola described
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by

S0(x, t) =
x2 ~t

m

2(α2 + ~2t2

m2 )
− arctan

(
~t
mα

)
/2. (313)

The low-density regions at the simulation boundaries do not cause the phase
scheme to fail.
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Figure 42: Evolution of wave function at three different times. Solid lines represent the nu-
merical solution using the phase scheme. Dashed lines represent analytical solution. Parameters
in Eq. (312) set as α = 1

10 , x0 = 2 with a domain size L = 10 and a resolution ∆x = 10/128.

Test 2: Quasi-Shock (1D)

The SPS in a static universe exhibits an important symmetry that we have
not yet mentioned: the scaling symmetry. If a wave function ψ solves the SPS,
then so does another wave function ψ′ with

ψ(x, t)′ = λ2ψ(λx, λ2t), λ ∈ R>0. (314)

This suggests that we look for solutions to the free Schrödinger equation that
only depend on the ratio x/

√
t. One such self-similar solution is given by

ψ(x, t) = A

2 +B − 1
2(1 ∓ i)C

(
x

√
m

π~|t|

)
− A

2 (1 ± i)S
(
x

√
m

π~|t|

)
, (315)

where the upper/lower sign is for a positive/negative t, A and B are constants
and C and S are the Fresnel integrals

C(θ) =
∫ θ

0
cos

(
πξ2

2

)
dξ, S(θ) =

∫ θ

0
sin

(
πξ2

2

)
dξ. (316)

The asymptotic behaviour of the density ρ is ρ → (A + B)2 as x → −∞ and
ρ → B2 as x → ∞. The density jump becomes increasingly sharp as t → 0
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and resembles what one expects for shock formation in a normal fluid. But this
resemblance is superficial because a normal shocks irreversibly produce entropy
whereas FDM dynamics are time-reversible (Hui et al. 2017, p.27). This test case
is interesting because the density profile exhibits characteristic oscillations on the
scale x ∼

√
~t/m. Fig. 43 compares the numerical solution using the phase

scheme with the analytical solution of Eq. (315) for t0 = 0.0025 in code units.
The phase scheme agrees well with the analytical solution which demonstrates
the phase scheme’s ability to capture intricate interference patterns as long as
the density is sufficiently high.
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Figure 43: Snapshots of evolution of wave function for Eq. (315). Solid, blue lines represent the
numerical solution using the phase scheme. Dashed, orange lines represent analytical solution.
Parameters set as A =

√
5 −

√
6, B =

√
6, x0 = 10, domain size L = 20 and ∆x = 20/4096.

The boundaries of the simulation are cut off since they are polluted by the periodic boundary
conditions of the simulation.

Test 3: Expansion Wave (1D)

This test case demonstrates one of the limitations of the phase scheme. The
phase scheme may develop discontinuities in the phase field S starting from
smooth initial conditions. We consider the Gaussian wave packet described in
Eq. (60) with a small background density ε:

ψ(x, t) = ε+
√√√√ 1
α + i~t

m

exp
(

− (x− x0)2

2(α + i~t
m

)

)
, (317)
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where ε ∈ R. The phase of this wave function is given by

S(x, t) = arctan
(

sin(S0(x, t))
cos(S0(x, t) + ε)

)
, (318)

where S0 is the phase of the Gaussian wave packet without background density
as given in Eq. (313). For ε > 0, S has roots x0n when S0(x, t) = πn for n ∈ Z
at a given time t:

x0n(t) = ±

√√√√(πn+ arctan
(

~t
mα

)
/2
)(

α2 + ~2t2

m2

)
2m
~t
. (319)

If we assume that ~t
αm

is small, we can expand the inverse tangent function to
obtain

x0n(t) = ±

√√√√2πnα2

(
~t
m

)−1

+ α

(
~t
m

)0

+ 2πn
(
~t
m

)1

, (320)

where we neglect higher-order terms. The first term under the root is large for
small times and the roots for larger n move with higher velocities. It turns out
that Eq. (320) roughly describes how a sharp jump in the phase field S propag-
ates. Fig. 44 shows the numerical and analytical evolution of Eq. (317) for four
different times. The analytical solution for the phase field is computed by adding
multiples of 2π to Eq. (318) until the phase field is continuous. We start with
smooth initial conditions and the phase field evolves into a parabola where the
density is large. The second panel shows that a discontinuity in the phase field S
develops from smooth initial conditions. The third panel shows why this is not
an issue for the wave scheme: Whereas the analytical solution of the Schrödinger
equation is oblivious to jumps of 2π, the phase scheme cannot easily adjust for
them. Fluid schemes for the Madelung equations do not share this problem be-
cause the velocity field also does not see the 2π jumps. The fourth panel shows
that the phase front propagates with a delay compared to the analytical solution
and exhibits unphysical oscillations. It does not capture the long-term evolution
of the wave packet correctly. A solution to this problem could be the
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The p-q-Scheme

We compute the finite differences for the phase field in terms of the variables
p and q defined as

p = sin(S/f), q = cos(S/f). (321)

for f ∈ R>0. The spatial derivatives of S can then be expressed as

∂xS = (q∂xp− p∂xq)f. (322)

The finite differences computed in this way are insensitive to jumps of f ·2π.
The drawback of this approach is that one needs to resolve f times the de
Broglie wavelength. This partly offsets the advantage of using the phase
scheme in the first place.

A value of f = 2 was sufficient in order for the phase scheme to correctly
describe long-term evolution of the wave packet in this test case. In general,
we did not observe such a pathological situation occurring in our cosmological
model simulations and therefore decided against the p-q-scheme. We believe that
it could occur if the flow of the phase field was opposite to the large-scale density
gradients at late time. If larger high-resolution simulations reveal that such a
situation occurs generically, the p-q-scheme represents a potential remedy.
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Figure 44: Snapshots of evolution of wave function for Eq. (317). Solid, blue lines represent the
numerical solution using the phase scheme. Dashed, orange lines represent analytical solution.
ε = 10−4 and other parameters are set as in Fig. 42.

Colliding Gaussian Wave Packet (1D)

In this section, we consider two travelling Gaussian wave packets meeting
each other. This test highlights another difficulty of the phase scheme: It fails if
regions of vanishing density occur.

The wave function of a single packet is given by Eq. (62) and the linear
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superposition reads:

ψ(x, t) =
√

α

α + i ~
m
t

exp
(

−(x+ x0 − ikα)2

2(α + i ~
m
t)

)
exp

(
−αk2

2

)

+
√

α

α + i ~
m
t

exp
(

−(x+ x0 + ikα)2

2(α + i ~
m
t)

)
exp

(
−αk2

2

)
.

(323)

Fig. 45 shows the numerical and analytical evolution of this situation. The
numerically computed density field describes the analytical solution well up to t =
0.0012 in code units where destructive interference leads to regions of vanishing
density. Numerically, the density does not exactly vanish, but as Li, Hui and
Bryan (2018) pointed out the true quantum pressure and hence the numerical
error still diverge. Correspondingly the numerical solution deviates from the
analytical solution at later times. We also observe that the phase field in the
middle panels exhibits unphysical oscillations in regions of very low density. The
density in these regions is at the order of 10−32 in code units and we expect
the numerical errors associated with the quantum pressure to be very large. We
conclude that the phase scheme performs worse than existing fluid solvers for the
Madelung equations, i.e. (Hopkins 2018), that manage to evolve past some of the
regions of vanishing density.
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Figure 45: Snapshots of evolution of wave function for Eq. (323). Solid, blue lines represent the
numerical solution using the phase scheme. Dashed, orange lines represent analytical solution.
Parameters are set as α = 1

500 , k = 20π, x0 = 0.5, x1 = 0.1, L = 1, ∆x = 1/512.

Gravity (2D)

In this section, we test the phase scheme for a slightly more realistic setup in
the context of cosmological simulations. We set the gravitational constant G = 1,
but still leave cosmological expansion turned off. The simulation is initialised with
the two-dimensional analogue of Eq. (63):

ψ(x, y) = √
ρb +

N∑
n=0

N∑
m=0

×
(
αn,m cos(2πnx/Lx) cos(2πmy/Ly)

+ βn,m cos(2πnx/Lx) sin(2πmy/Ly)
+ γn,m sin(2πnx/Lx) cos(2πmy/Ly)
+ δn,m sin(2πnx/Lx) sin(2πmy/Ly)

)
,

(324)
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where αn,m, βn,m, γn,m and δn,m are small uniform, random numbers and Lx and
Ly the extents of the simulation box in the x- and y-directions. These initial
conditions correspond to a power spectrum with a sharp cutoff for high k and
we will refer to them as cosmological IC in the following. Fig. 46 shows the
evolution of cosmological IC under the influence of gravity at two different times.
The left columns show the density and phase field as computed with the phase
scheme, the center columns show their evolution computed using the reference
wave scheme and the right column shows the relative differences of the fields. We
observe that the two schemes agree well up to t = 1.0 in code units. The phase
field stays continuous and no low-density regions have formed. Further evolution
reveals that the wave and phase schemes disagree at the filaments and halos.
The mismatch in the density fields remains limited to these regions and does
not propagate into the rest of the simulation. Whereas the phase field remains
smooth for the phase scheme, the wave scheme has developed 2π-discontinuities.
As a result, the naive algorithm which adds multiples of 2π to make the quantity

S̃ = arctan
(

=(ψwave)
<(ψwave)

)
(325)

continuous fail. This is shown in the bottom plot in the center column of the
lower panel. The phase scheme remains stable at later times, but disagrees with
the wave scheme. A plot can be found in appendix A.7.
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Figure 46: Snapshots of evolution of wave function for Eq. (324) at times t = 1.0 and t = 1.5
in code units. The left columns show the phase scheme, the center columns show the reference
wave scheme and the right columns their relative mismatch. Black regions correspond to zero
relative error, whereas white regions correspond to 100% relative error. Parameters are set as
N = 10, L = 25, ∆x = 25/256, G = 1 and a = 1 with the initial perturbations between 0 and
5 · 10−3.
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Accuracy Test

We measure the accuracy of the phase scheme by computing its truncation
error E in the L1-norm. In the one-dimensional case it reads:

E(t) =
∑N
i=1 |ρi(t) − ρana(xi, t)|

N
, (326)

where ρana(x, t) is the density of an analytical solution to the Schrödinger equa-
tion. If a numerical scheme has order of accuracy s, we expect the error to behave
like

E(t) = C(t)(∆x)s + higher-order terms. (327)

The constant C(t) depends on the particular solution computed as well as on
the time t. Higher-order terms are asymptotically negligible as ∆x → 0. Often,
the quality of a numerical method is summarised by the order of accuracy s, but
this can be misleading (LeVeque 2002, p.150). The higher-order terms can be
dominant on the grids one uses in practice. Similarly, a lower-order method with
low C for a given problem can outperform higher-order methods. Fig. 47 shows
the truncation error for a number of different test cases as a function of the grid
size for solutions to the one-dimensional Schrödinger equation. We viasualise
them on a double-logarithmic scale because Eq. (327) then takes the form

logE ≈ log |C| + s log |∆x|. (328)

Accordingly, we can read off the order of accuracy as slope of the graphs.
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Figure 47: Log-log plot of the L1-truncation error vs. grid size for the higher-order phase
scheme (SO, solid lines) and the first-order phase scheme (FO, dashed line) for the HJ-Madelung
equations on different test problems: The test Gaussian correspond to Eq. (60); the tests PW
1D, PW 2D and PW 3D correspond to solutions of the free Schrödinger equation for cosmolo-
gical IC without gravity in 1D, 2D and 3D; the tests Cosmo 2D and Cosmo 3D corresponds to
tests with cosmological IC and gravity in 2D and 3D. For the Cosmo 2D and Cosmo 3D tests,
the reference solution was computed using the reference wave scheme.

The higher-order phase scheme is approximately of order two in all tests con-
sidered and always outperforms the first-order phase scheme. Appendix A.7
provides a discussion of the effect of choosing different limiters on the accur-
acy of the phase scheme. It turns out that the choice of limiter can have a large
impact impact on the constant C depending on the test problem, but that for
the tests with gravity and cosmological IC all limiters considered perform equally
well.
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Stability test

In order to assess the stability of the phase scheme, we evolved Eq. (63)
for N = 10, L = 25, ∆x = 25/64, G = 1 and a = 1 up to t = 25. The
algorithm remains stable and conserves the density remains positive. Because of
interference, energy is not conserved, however. In addition, we also experimented
with different time discretisations and the allowed maximum time step conditions,
especially in terms of the condition

∆t ≤ CD
m

~
∆x2. (329)

Fig. 48 shows the truncation error as a function of the time step condition CD

for a number of two-dimensional test cases with gravity. The truncation error
starts to increase rapidly once the time steps become too large. For these tests,
we found that the phase scheme is stable up to CD ∼ 0.06 for the second-order
TVD RK method given in Eq. (263), up to CD ∼ 0.4 for a third-order TVD RK
method and up to CD ∼ 0.7 for the fourth-order TVD RK method given in Eq.
(264). This result suggests that one should use a higher-than-second-order time
discretisation for the phase scheme.
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Figure 48: Truncation error E as a function of the time step condition defined in Eq. (329)
for a variety of different of different two-dimensional tests with gravity for resolutions between
∆x ∼ 10−2 and ∆x ∼ 10−4 in code units. The four colours denote the order of the respective
time discretisations used.
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5.7 The Hybrid Scheme

This section explains how the interplay of the phase scheme and the wave
scheme works to produce a hybrid scheme on a static, uniform grid. We have
seen that the phase scheme fails in regions of destructive interference where the
density vanishes, i.e. the filaments and halos in a cosmological simulation. In
these regions, we want to employ a wave scheme. In the following, we will describe
the wave scheme and explain how we detect regions of interference and perform
the boundary matching.

5.7.1 Design

As wave scheme, we choose a fourth order FTCS method with a second-
order RK time discretisation because it is explicit, accurate, integrates well with
the phase scheme, is easy to implement and very similar to the scheme used in
the GAMER-code. Gravity is also handled with a kick-drift-kick scheme. As
criterion for detecting interference, we use the magnitude of the quantum pressure
term. Our numerical experiments show that it can reliably indicate where the
phase scheme fails. This is because the quantum pressure diverges in regions of
vanishing density. Moreover, the quantum pressure is responsible for interference
in the HJ-Madelung equations and its magnitude therefore naturally quantifies
the importance of interference effects. As an alternative, we considered using the
Peclet number of the convective equations (52) as criterion. The Peclet numbers
PSr and PSi defined via the coefficients F of the convective terms and D of the
diffusive terms measure the relative strength between convection and diffusion:

DSr = ~
2m∆x, DSi = − ~

2m∆x, FSr = vr, FSi = vi, (330)

PSr = FSr/DSr , PSi = FSi/DSi . (331)

In our experiments, PSr can also be used to reliably determine where the phase
scheme fails. Still, we decided to base the switching criterion on the dimensionless
quantity Mint:

Mint = (∆x)2 1
Ndim

∆√
ρ

√
ρ
, (332)

where Ndim is the number of dimensions. We discretise it according to Eq. (308)
with a second-order central difference. Mint has the advantage that it is easy to
compute (we compute it anyway for evolving the phase scheme) and that it is
independent of the constants G and ~

m
. It proved robust and fairly universal in
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our tests. In one dimension, it reads

Mint =
∣∣∣∣∣
√
ρ
i+1 − 2√

ρ
i
+ √

ρ
i−1√

ρ
i

∣∣∣∣∣ . (333)

If Mint crosses a fixed threshold, we switch to the wave scheme. We empirically
found a threshold of around Mint ∼ 0.05 by experimenting with 2D simulations.
It works well for the wave expansion and colliding wave packet tests in 1D as well
as for simulations with gravity over a range of different resolutions ∆x in 2D and
3D. Yet, it is resolution-dependent and will certainly need improving before it
can be used in a large-scale cosmological simulation. Fig. 49 shows which regions
it flags for the use of the wave scheme in a 2D simulation with gravity.

Figure 49: Visualisation of the switching criterion.
In first row from left to right: density, phase, Mint.
In second row from left to right: relative density mismatch between phase scheme and reference
wave scheme, regions where Mint defined in Eq. (333) is greater than 0.05, overlay of density
mismatch (bw) and regions where switching criterion requires wave scheme (red).

The complete algorithm for the phase scheme reads as follows: We divide the
simulation volume into patches that are are managed via a binary tree in 1D,
a quadtree in 2D and an octree in 3D. We start with a root patch covering the
entire simulation. At the beginning of every Nupdate time steps, we check which
subregions require the wave scheme. If a subregion requires the wave scheme,
the simulation volume is subdivided accordingly and the tree structure updated.
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The tree stores where to use the wave and where to use the phase scheme. Next,
the phase of the wave function and the phase field are both advanced by half a
time step. Then, the ghost boundaries are populated. If a patch using the wave
scheme provides boundary information for a patch using the phase scheme, the
phase is made continuous by adding multiples of 2π at every point. Since we use a
uniform grid, the grid needs to be fine enough to resolve the de Broglie wavelength
everywhere. Only then will the reverse boundary problem have a unique solution.
The patches using the phase scheme naturally provide boundary conditions for
the patches using the wave scheme. Once the boundaries are populated, we
perform a drift step with the respective FTCS and phase schemes. We then
compute the updated density field from the updated wave functions and compute
the gravitational field by solving the Poisson equation with a Fourier transform
across the whole computational domain. The gravitational field is then used to
kick the phase fields by half a time step once again. This completes one time
step.

5.7.2 Testing and Validation

In the following, we validate the hybrid scheme with the one-dimensional
colliding wave packet test given by Eq. (323) and with 2D and 3D test cases
using gravity and cosmological IC.

1D

Fig. 50 demonstrates the hybrid scheme’s ability to detect regions where the
phase scheme fails and to automatically switch to the wave scheme when neces-
sary. Note that the hybrid scheme also switches to the wave scheme in regions
of very low, but non-vanishing density where the phase scheme would otherwise
accumulate large errors. In this example, we run an additional smoothing step
over the phase field to ensure its continuity when switching back from the wave
to the phase scheme. In an AMR simulation, one would need to make sure to
resolve the de Broglie wavelength is such a case.
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Figure 50: Snapshots of 1D simulation from according to Eq. (323) using the hybrid scheme.
Wave scheme is employed within the subregions that are shaded in blue. Parameters are set as
in Fig. 45.

.
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2D

We now consider a two-dimensional test case with gravity and cosmological
IC that demonstrates the hybrid scheme’s ability to resolve interference around
halos and filaments correctly. Fig. 51 shows the output of the hybrid scheme at
time t = 1.5 in code units for the same initial conditions as in Fig. 46. The wave
scheme is used in subregions denoted by a white rectangle. The first subregions
using the wave scheme are required at t = 1.2 and at t = 1.5, the wave scheme
is used for around 50% of the simulation volume. We observe the hybrid scheme
performs much better than the phase scheme and large relative errors only remain
where the phase and density are very small.
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Figure 51: Snapshot of 2D simulation from cosmological initial conditions on a grid with 2562

points using the hybrid scheme. Wave scheme is employed within the subregions indicated by
a white rectangle. Parameters are set as in Fig. 46.

3D

Finally, we present a three-dimensional test case with gravity and cosmological
IC. It demonstrates that all methods developed in the previous sections also
work in a three-dimensional simulation. Fig. 52 shows density slices from a 3D
simulation with cosmological IC at time t = 1.6. The wave scheme is required for
around 10 % of the simulation volume in this three-dimensional test. Halos and
filaments form and show the correct interference patterns. Finally, Fig. 53 shows
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a volume rendering of the same simulation also visualising the regions where the
wave scheme is employed. The overdense region in the left part of the figure
corresponds to the overdense region with concentric interference rings in the left
column in Fig. 52.
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Figure 52: Density and phase slices from 3D simulation using the hybrid scheme on a grid
with 1283 points at time t = 1.6. Wave scheme is employed within the subregions shown by a
white rectangle. Third row shows relative mismatch between densities of reference wave scheme
and hybrid scheme. Slices from left to right are at the following positions (units in grid cells): in
y-z-plane at x = 38, in x-z-plane at y = 26 and in x-y-plane at z = 13. Simulation parameters
are set as N = 10, L = 12, ∆x = 12/128, G = 1 and a = 1.

5.8 Discussion

This chapter presented a hybrid algorithm for simulating FDM on a uniform
static grid in 1D, 2D and 3D. It evolves the HJ-Madelung equations on large scales
and dynamically switches to a wave scheme for the SPS in regions of interference.
We numerically assessed the stability and accuracy of the phase scheme. It turned
out to be important to use a shock-capturing scheme for evolving both the density
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Figure 53: Volumetric rendering of 3D simulation using hybrid scheme on a grid with 1283

points at time t = 1.6 in code units. Wave scheme is employed within the subregions shown
by white mesh. Regions with higher density are visualised with lighter shades of red. The
black, right edge of the rendering corresponds to the edge of the simulation volume. The
overdense region in the left part of the figure corresponds to the overdense region with concentric
interference rings depicted in the left column in Fig. 52. The rending was created using the
yt-library (Turk et al. 2011).

and phase fields. Further, stability remains an issue because the quantum pressure
term can introduce negative densities. That is why we advocate for third- or
fourth-order TVD RK time discretisations that also allow for relatively large time
steps. Next steps in the development of the hybrid scheme include implementing it
in an AMR code and determining criteria from when to refine the phase equation.
Standard criteria for fluid AMR codes can provide guidance here. Further, a
third-order scheme with a parabolic subgrid model might be desirable. Lastly, the
scheme needs to be assessed on the basis of a large-scale cosmological simulation
in order to verify that phase jumps to do not introduce large errors.
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6
Conclusions and Outlook

In this thesis, we compared the CDM and FDM models in the context of
a Euclid-like weak lensing survey using non-linear Eulerian PT and developed
a proof-of-concept code for a hybrid scheme that solves the Hamilton-Jacobi-
Madelung equations on large scales and the wave formulation of the SPS in regions
of interference.

In the first part of the thesis, we presented a general framework for time-
dependent Eulerian PT based on Scoccimarro’s method. It requires few assump-
tions and can easily be applied to other dark matter models that use a set of
(modified) Euler equations. We used it to demonstrate the cosmology depend-
ence of standard time-independent Eulerian PT in CDM and applied it to FDM to
compute matter spectra and bispectra at tree- and loop-level and matter trispec-
tra at tree-level. We went on to compute the lensing spectra and bispectra at
tree- and loop-level as well as the lensing trispectra at tree-level for the FDM
masses m = 10−21 eV, m = 10−22 eV and m = 10−23 eV. We gave estimates of the
attainable cumulative signal-to-noise ratios in a weak lensing survey. Further, we
have computed the χ2-functionals expressing whether we could distinguish the
CDM and FDM models if the universe was described by the CDM model and we
wrongly assumed an FDM model. According to FDM PT, which we expect to
give a lower bound on the attainable χ2 values, we can distinguish FDM from
CDM for masses up to m = 10−23 eV at tree-level and for masses up to m = 10−22

eV if we include loop-level corrections. A weak lensing signal from FDM with a
mass higher than m ∼ 10−21 eV is not measurable according to PT in our model
survey. A comparison of the predictions of FDM PT with the predictions of
CDM PT with FDM initial conditions lets us conclude that the impact of the
FDM model on the considered weak lensing observables lies mainly in the initial
conditions in the form of the initial power spectra at high redshift and not in the
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late time power suppression through FDM dynamics.
In the second part of the thesis, we have combined a newly developed second-

order scheme for solving the Hamilton-Jacobi-Madelung equations with a wave
scheme to create a hybrid scheme for simulating structure formation in the FDM
model. We opted for solving the Hamilton-Jacobi equation and not the Made-
lung equations because this approach is better suited for reconstructing the wave
function at the boundaries between the wave and fluid simulations. The hybrid
scheme uses a MUSCL conservative finite difference scheme for the continuity
equation and a monotone, upwind finite difference scheme for the Hamilton-
Jacobi equation. It turned out necessary to use shock-capturing schemes for
evolving both the density and phase fields. Otherwise, the simulation fails once
the formation of halos and solitons sets in. We have performed a series of one-,
two- and three-dimensional test to validate the correctness of the implementation
and the stability of the hybrid scheme. A three-dimensional simulation mimicking
a cosmological simulation demonstrates the hybrid scheme’s ability to correctly
recover small-scale FDM dynamics while solving the Hamilton-Jacobi-Madelung
equation in a large fraction of the simulation volume.

Beyond the scope of this thesis is the implementation of the hybrid scheme in
an existing code for cosmological simulations that uses adaptive mesh refinement
and could actually benefit from the hybrid scheme. Potentially, the hybrid scheme
can push the range simulation volumes for the allowed range of FDM masses
significantly closer to those relevant for studying galaxy evolution in an FDM
simulation.
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A APPENDIX

A
Appendix

A.1 Newtonian Cosmology

In this section, we give a reminder on Newtonian cosmology based on the
classical reference (Peebles 1981, pp. 41-43). We introduce the Friedmann equa-
tions and derive the Poisson equation in comoving coordinates. Note that while
the derivation of the SPS in chapter 2 is based on the linear perturbation of
the Robertson-Walker line element, the SPS and all related equations can be
understood purely in terms of Newtonian cosmology.

The position of particles in Newtonian cosmology is described in terms of
comoving coordinates x that are related to the proper separation r of two particles
via the relation r = ax, where a(t) is the scale factor. Accordingly, the velocity is
given by ṙ = ȧ(t)x + a(t)ẋ and differentials transform as ( ∂

∂t
)r = ( ∂

∂t
)x −Hx · ∇x

and ∇r = 1
a
∇x. In a homogeneous and isotropic background universe, the scale

factor evolves according to the Friedmann equations:

ä

a
= −4

3πG
(
ρb + 3pb

c2

)
+ Λ

3 , (334)

ȧ2

a2 = 8
3πGρb + Λ

3 − R−2

a2 , (335)

where Λ is the cosmological constant and a|R|c is the radius of curvature of the
hypersurface at t = const. and d

dtx ≡ ẋ. In terms of the conformal time τ

defined via dt = a(τ)dτ and the conformal Hubble function H = d ln(a)
dτ = Ha,

the Friedmann equations read

H′ = −Ωm(τ)
2 H2(τ) + Λ

3 a
2(τ) =

(
ΩΛ(τ) − Ωm(τ)

2

)
H2(τ),

R−2 = (Ωtot(τ) − 1)H2(τ),
(336)
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where d
dτ x ≡ x′. In a closed model R−2 > 0 and in an open model R−2 < 0. The

Einstein-de Sitter model has R−2 = Λ = 0 with p = 0. The density parameters
is the ratio of the mean mass density ρb(t) to the density in an Einstein-de Sitter
model with the same Hubble constant,

Ω(t) = 8
3πGρb/H

2
0 . (337)

Alternatively, we can use the Friedmann equation to obtain

∆Φ(x, τ) = 3
2Ωm(τ)H(τ)δ(x, τ) (338)

In the Newtonian limit the zero-zero component of the field equations for an ideal
fluid with mass density ρ, pressure p and velocity v � c becomes

∆rΦ = 4πG
(
ρ+ 3p

c2

)
− Λ, (339)

and in the limit where p � ρc2 , we find that an observer in the background
model measures the potential

Φb = 2
3πGρb(t)r

2 − Λ, (340)

where ρb(t) is the mean mass density. The geodesic equations become

r̈ = −∇Φ. (341)

Rewriting them in comoving coordinates yields the cosmological equation

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λ

3 . (342)

The proper velocity of a particle relative to the origin expressed in comoving
coordinates is given by

u = aẋ + xȧ, (343)

and its Lagrangian reads

L = 1
2m(aẋ + ȧx)2 −mΦ(x, t). (344)

Under the canonical transformation

L → L − dψ
dt , ψ = 1

2maȧx
2, (345)
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the Lagrangian reduces to

L = 1
2ma

2ẋ2 −mφ, (346)

where φ = Φ + 1
2aäx

2. The field equation for the new potential φ is

∆xφ(x, t) = 4πGa2(ρ(x, t) − ρb(t)). (347)

A.2 Explicit Symmetrisation of FDM PT Kernels

In this section, we explicitly derive the symmetrised PT kernels F (s)
3 and F (s)

4

by making use of the symmetries of the vertex couplings in FDM. We start with
the third-order kernel explicitly given in Eqs. (145) and (146) for a = 1 and the
corresponding diagram given in Fig. 9. Since Γ1bc = Γ1cb, as follows from Eq.
(154), Eq. (145) reduces to

I
(3)
1 (k1,k2,k3, η) = 2

∫ η

η0
dsΓ(2)

1bc(k,k1,k23, s, η)
∫ s

η0
ds1Γ(2)

cde(k23,k2,k3, s1, s)

fb(k1, s, η)fd(k2, s1, s)fe(k3, s1, s).
(348)

Since I
(3)
1 already enjoys symmetry under k2 ↔ k3 and k23 ↔ k1, it can be

symmetrised as

I
(3,s)
1 (k1,k2,k3, η) = 1

3(I(3)
1 (k1,k2,k3, η)+I

(3)
1 (k2,k1,k3, η)+I

(3)
1 (k3,k2,k1, η)),

(349)
Further, J (3)

1 is already symmetric under exchange of momenta because the only
nonvanishing element of the vertex coupling Γ at fourth order is the (1111)-
component given in Eq. (155) that stems from the quantum pressure term and
is already symmetric under exchange of momenta:

J
(3,s)
1 (k1,k2,k3, η) = J

(3)
1 (k1,k2,k3, η)

=
∫ η

η0
Γ(3)

1111(k,k1,k2,k3, s, η)f1(k1, s, η)f1(k2, s, η)f1(k3, s, η)
(350)

We conclude

F
(s)
3 = J

(3,s)
1 (k1,k2,k3, η) + I

(3,s)
1 (k1,k2,k3, η). (351)
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At fourth order, we distinguish five contributions to the coupling kernel:

Ψ(4)
2 (k, η) = δ(k1, η)δ(k2, η)δ(k3, η)δ(k4, η)δD(k − k1234)

(J4(k1,k2,k3,k4, η)
+K4(k1,k2,k3,k4, η)
+H4(k1,k2,k3,k4, η)
+W4(k1,k2,k3,k4, η)
+ I4(k1,k2,k3,k4, η)).

(352)

The contribution W4 corresponds to the diagram in Fig. 10 and takes the simple
form:

W4(k1,k2,k3,k4, η) =
∫ η

η0
Γ(4)

11111(k1234,k1,k2,k3,k4, s, η)

f1(k1, s, η)f1(k2, s, η)f1(k3, s, η)f1(k4, s, η).
(353)

As at third order, Γ(4)
11111 stems from the quantum pressure term and is therefore

symmetric under exchange momenta from which it follows that W4 is symmetric
under exchange of momenta. The contribution I4 corresponds to the left diagram
in Fig. 11:

I4(k1,k2,k3,k4, η) =
∫ η

η0
dsΓ(2)

1bc(k1234,k12,k34, s, η)∫ s

η0
ds1

∫ s

η0
ds2Γ(2)

bde(k12,k1,k2, s1, s)Γ(2)
cfg(k34,k3,k4, s2, s)

fd(k1, s1, s)f(k2, s1, s)ff (k3, s2, s)fg(k4, s2, s),
(354)

which can be symmetrised by using the fact that it is already invariant under
k1 ↔ k2; k3 ↔ k4; k1,k2 ↔ k3,k4:

Is4(k1,k2,k3,k4, η) =
1
3(I4(k1,k2,k3,k4, η) + I4(k1,k3,k2,k4, η) + I4(k1,k4,k3,k2, η)).

(355)
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The contribution J4 corresponds to the right diagram in Fig. 11:

J4(k1,k2,k3,k4, η) =

4
∫ η

η0
dsW2bc(k1234,k1,k234, s, η)fb(k1, s)

×
∫ s

η0
ds1Wcde(k234,k2,k34, s1, s)

∫ s1

η0
ds2Wefg(k34,k3,k4, s2, s1)

× fd(k2, s1, s)ff (k3, s2, s1)fg(k4, s2, s1),

(356)

and enjoys symmetry under k1 ↔ k234; k2 ↔ k34; k3 ↔ k4. The factor 4 follows
from the three additional permutations of the diagram. Its fully symmetric form
is given by

Js4(k1,k2,k3,k4, η) = 1
12(J4(k1,k2,k3,k4, η) + J4(k1,k3,k2,k4, η)

+ J4(k1,k4,k3,k2, η) + J4(k2,k3,k1,k4, η)
+ J4(k2,k4,k1,k3, η) + J4(k3,k4,k1,k2, η)
+ J4(k2,k1,k3,k4, η) + J4(k3,k1,k2,k4, η)
+ J4(k4,k1,k3,k2, η) + J4(k3,k2,k1,k4, η)
+ J4(k4,k2,k1,k3, η) + J4(k4,k3,k1,k2, η)).

(357)

The contribution K4 corresponds to the left diagram in Fig. 12:

K4(k1,k2,k3,k4, η) =

2
∫ η

η0
dsΓ(2)

1b2(k1234,k1,k234, s, η)fb(k1, s, η)

×
∫ s

η0
ds1(Γ(3)

1111(k234,k2,k3,k4, s1, s)

× f1(k2, s1, η)f1(k3, s1, s)f1(k4, s1, s)).

(358)

where the additional permutation together with the symmetry properties of Γ(2)
abc

give the factor of 2. Again, we recognise that the expression is invariant under
permutations of k2,k3 and k4. Its symmetric form is given by

K
(s)
4 (k1,k2,k3,k4, η) =

1
4
[
K4(k1,k2,k3,k4, η) +K4(k2,k1,k3,k4, η)

+K4(k3,k2,k1,k4, η) +K4(k4,k2,k3,k1.η)
] (359)
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The last remaining contribution H4 corresponds to the right diagram in Fig. 12:

H4(k1,k2,k3,k4, η) =∫ η

η0
Γ(3)

1111(k1234,k14,k2,k3, s, η)f1(k2, s, η)f1(k3, s, η)

×
∫ s

η0
ds1Γ(2)

1ef (k14,k1,k4, s1, η)fe(k1, s1, s)ff (k4, s1, s)

+ permutations with k1 ↔ k2,k1 ↔ k3.

(360)

A symmetrised form of H4 is given by

H
(s)
4 (k1,k2,k3,k4, η) =

1
6
[
(H4(k1,k2,k3,k4, η) +H4(k1,k3,k2,k4, η)

+H4(k1,k4,k3,k2, η) +H4(k2,k3,k1,k4, η)
+H4(k2,k4,k1,k3, η) +H4(k3,k4,k1,k2, η)

]
.

(361)

It follows that

F
(s)
4 (k1,k2,k3,k4, η) =

[
J

(s)
4 (k1,k2,k3,k4, η) +H

(s)
4 (k1,k2,k3,k4, η)

+W
(s)
4 (k1,k2,k3,k4, η) + I

(s)
4 (k1,k2,k3,k4, η) +K

(s)
4 (k1,k2,k3,k4, η)

]
.

(362)

A.3 Linear Growth in FDM

This section describes in detail how we compute the linear growth factors
D(k, a) as solutions to the linear growth equation (89) in FDM. The linear growth
factors describe how linear density fluctuations grow

δ(x, a) = δ(x, a = 0)D(a). (363)

In a FDM-dominated EdS universe there are known analytical solutions of the
linear growth equation in terms of Bessel functions given by Eq. (93). If we
naively use them evolve a linear density fluctuation from the time a0 to the time
a we find

D±(k, a, a0) =
(
a0

a

) 1
4 J∓5/2

(
b(k)
2
√
a

)
J∓5/2

(
b(k)

2√
a0

) . (364)

We immediately notice that Eq. (364) exhibits unphysical divergences at the roots
of the Bessel function. Laguë et al. (2020) argue that this is simply a matter of
choice of normalisation, but this is not quite true. Eq. (364) is obviously not
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a solution of the linear growth equation equation (89) since it is divergent. We
conclude that Eq. (93) only describes the evolution of linear fluctuations for
initial conditions where D±(k, ain) = 1. For different initial conditions, we are
not aware of an analytical solution to Eq. (89), even in the EdS case. Laguë et al.
(2020) suggest two ways to remedy this issue: One way is to approximate the
denominator of Eq. (364) by a fifth-order Taylor expansion of the Bessel function

J−n(x) = x−n
[ 2n
Γ(1 − n) + 2n−2x2

(n− 1)Γ(1 − n)

+ 2n−5x4

(n− 2)(n− 1)Γ(1 − n) + O(x6)
]
,

(365)

where Γ(x) =
∫∞

0 dy yx−1e−y is the Euler Gamma function. This normalisation
removes divergences from Eq. (364) and gives little oscillations. In contrast,
a different number of terms in the Taylor expansion leads to fast oscillations
and/or divergences. At the same time, renormalising the growth function with
this prescription has the disadvantage that D+(k, a0, a0) 6= 1 in the oscillating
regime. The alternative that Laguë et al. (2020) adopt is to use a model for the
mean growth of the FDM growth function. They describe the growing mode D+

in terms of a smoothed Heaviside step function:

D(k, a) ≈
(

1 −
[
1 + e−2α(k−k0)

]−8
)
DCDM(a), (366)

where k0 ∝ kJ and α are free parameters determined via a fit to the axion-
CAMB transfer function. For large scales, this approach exactly recovers the
CDM growth function, but has the disadvantage that oscillations are entirely
neglected. Moreover, the smoothed Heaviside step function falls off exponentially
for large k which is not a correct description of the asymptotic behaviour of D+.
For large k, the Bessel function behaves as

D+(k, a) ∝ J− 5
2

(
b(k)
2
√
a

)
∝ 1
k

cos
(
b(k)
2
√
a

)
. (367)

For this reason, we opted for a different mean growth model of the form:

D(k, a) ≈
(

1 + α

(
k

kJ

)β )
DCDM(a), (368)

Fig. 54 shows a numerical fit of this model to the growing solution of Eq. (89) for
m = 10−23eV . It turns out that the asymptotic behaviour of this average growth
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Figure 54: Depiction of fit of the mean growth model defined in Eq. (368). The left plot
shows the numerical solution of Eq. (89) in the fiducial cosmology for m = 10−23 eV. The
right plot shows the fitted model for with fit parameters α = 1.11 and β = 7.38. The z-axis
as well as the colour scheme depict the quantity D+(k, a). The input data are normalised to
D+(k, a0) = 1.

model is D(k) ∼ k−7 in both EdS and the fiducial cosmology and therefore still
fails to describe the correct asymptotic behaviour of the FDM growth factor.
In this thesis, we therefore opt for integrating Eq. (89) numerically. As initial
conditions, we choose

D(a0) = 1, D′(a0) = D′
CDM(a0), (369)

where D′
CDM(a0) is obtained via numerical integration of the linear CDM growth

equation (73) starting from a scale factor a′
0 � a0, i.e. a′

0 = 10−6 and a0 = 10−2.
This approach has several advantages: We ensure D(k, a0, a0) = 1 via the initial
conditions and obtain the correct CDM evolution in a general cosmology in the
limit k → 0. Further and most importantly, the growth factor obtained in this
way is in fact a solution to the linear growth equation (89) up to numerical
accuracy. It does not exhibit unphysical divergences as shown in Fig. 55. We see
that the growth factor renormalised via the prescription in Eq. (365), the mean
growth model defined in Eq. (368) and the numerical solution of the growth
equation also exhibit the correct asymptotic behaviour

lim
k→∞

DFDM(k, a)
DCDM(a) = 0. (370)

In addition, the numerical solution captures the oscillatory behaviour of the ana-
lytical solution for high k as shown in Fig. 56. Unfortunately, there are also
several disadvantages to numerically integrating the linear growth equation in
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Figure 55: Asymptotic behaviour of growing modes represented via the quotient of FDM
and CDM growth factors D+,F DM (k, a)/D+,CDM (a) in an FDM-dominated EdS universe for
m = 10−23 eV. The graphs show the analytical, divergent expression (364), the renormalised
expression using Eq. (365), the mean growth model defined in Eq. (368) with the fit parameters
α = 0.61, β = 6.46, as well as the numerical solution obtained by integrating the linear growth
equation with initial conditions given by Eq. (369).

FDM. Firstly, we do not actually capture the growing mode in the oscillating
regime. This is because we do not know the correct initial conditions for the
growing mode. Therefore, the numerical solution in the oscillating regime will in
general be a linear combination of the two modes D+ and D−. However, since
the correct initial conditions for the linear fluctuation fields are unknown too,
this does not add any uncertainty to the linear growth model in terms of initial
conditions. In any case, we recover the correct modes for a > aosc. This is be-
cause any component proportional to D− in the initial conditions quickly decays
away for a > aosc.
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Figure 56: Comparison of different models for growth factor D(F DM)
+ in an FDM-dominated

EdS universe for m = 10−23 eV. From top to bottom, the maps show the analytical, divergent
expression (364), the renormalised expression using Eq. (365), the mean growth model defined
in Eq. (368) with the fit parameters α = 0.61, β = 6.46, the numerical solution obtained by
integrating the linear growth equation with initial conditions given by Eq. (369) as well as the
analytical CDM solution from Eq. (78).

Another disadvantage of the numerical integration of the linear growth equa-
tion is that it requires interpolation for different momenta. We solve this problem
by using a two-dimensional cubic spline to describe the growth factor. The time
dimension is resolved with 1000 points in the range a ∈ [0.01, 1] and the mo-
mentum dimension is resolved with 2000 points in the range k ∈ [10−6, 103] Mpc−1.
For k > 103 Mpc−1, the spline is extrapolated as D(k, a) ∝ k−4. We numerically
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verified that increasing the resolution of the spline and increasing kmax to higher
values does not change any of our results. The biggest disadvantage of numeric-
ally integrating the growth equation Eq. (89) is, however, that we are unable to
obtain two linearly independent solutions. Integrating the growing mode forward
and the decaying mode backward in time, we could not find a prescription to
ensure that we obtain orthogonal solutions in the oscillating regime. Figs. 57
and 58 illustrate this issue.
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0.0

0.1
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D
(k
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)

Analytical growing mode
Analytical decaying mode
Numerical growing mode
Numerical decaying mode

Figure 57: Comparison of analytical and numerical solutions of Eq. (89) in oscillating regime.
The analytical solutions are given by (93) and have arbitrary normalisation. As opposed to the
analytical solutions, the numerical solutions are not orthogonal.
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Figure 58: Comparison of analytical and numerical solutions of Eq. (89) in the oscillating
regime. The colours denote the growing mode (blue) and the decaying mode (orange). The
size of the data points denote the time a, where earlier times are denoted by bigger dots. The
variable range depicted is from a0 = 0.01 to a = 1 for k = 50 h/Mpc and m = 10−23 eV.

Consequently, we were unable to calculate the Green’s function of the growth
equation in a general cosmology for FDM. Tests with the the mean growth model
for both the growing and decaying mode in order to compute the Green’s function
were also not successful. Instead, we rely on the analytical solution of the FDM
growth function in EdS to carry out time-dependent PT in FDM. The Green’s
function calculated in this way does not exhibit any unphysical divergences be-
cause the denominators cancel.

A.4 Lensing Integrals

In the following, we describe how to perform the loop-level, line-of-sight,
signal-to-noise and χ2 integrations in chapter 4. Let us begin with integrating the
loop-level integrations to the matter spectra. The task amounts to numerically
integrating Eqs. (177) and (183). Both integrands exhibit IR divergences. If
we find a way to rewrite the integrands s.t. the leading IR divergences cancel,
all subleading IR divergences are guaranteed to cancel as well (Scoccimarro and
Frieman 1995; Jain and Bertschinger 1995). Carrasco et al. (2013) give such an
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expression:

P
(1)
IR−safe =

∫ d3q

(2π)3

[
6F (s)

3 (k, q,−q)P (0)(k)P (0)(q)

+2[F (s)
2 (k − q, q)]2P (0)(|k − q|)P (0)(q)θ(|k − q| − q)

+2[F (s)
2 (k + q,−q)]2P (0)(|k + q|)P (0)(q)θ(|k + q| − q)

]
,

(371)

Eq. (371) can be applied to the FDM case since the momentum dependence of
the FDM mode coupling functions does not introduce any additional divergences
compared to the CDM case. The same holds true for the IR safe version of the
bispectrum corrections that are divergent just as in the case of the one-loop power
spectrum. Baldauf et al. (2014) provide an IR-safe expression for the bispectrum
contributions: The integrands of the contributions BII

321 and B411, as defined in
Eq. (183) only exhibit divergences at q = 0. The integrand of BII

321 exhibits a
divergence at q = k2 which can be mapped to a divergence at q = 0 by writing∫

q
b̃I321 =

∫
q<|k2−q|

d3q bI321(q,k2,k3) +
∫
q≥|k2−q|

d3q bI321(q,k2,k3)

+ 5 permutations

=6
∫

d3qbI321(q,k2,k3)θ(|k2 − q| − q) + bI321(−q,k2,k3)θ(|k2 + q| − q)

+ 5 permutations.
(372)

Similarly, one finds the following expression for the integrand of B222:∫
q
b̃222 =1

2

∫
d3q{[b222(q,k1,k2)θ(|k1 + q| − q)θ(|k2 − q| − q)

+ b222(−q,k1,k2)θ(|k1 − q| − q)θ(|k2 + q| − q)]
+ [k1 ↔ k3] + [k2 ↔ k3]}.

(373)

The full one-loop bispectrum in a form where all IR-divergences cancel is then
given by

BSPT = B112 +
∫
q
b̃222 + b̃I321 + [bII321 + 5 perm.] + [b411 + 2 cyclic perm.]. (374)

We integrate the above expressions using the CUBA-library (Hahn 2004). For
the loop-corrections to the CDM power spectrum, the four integration algorithms
Vegas, Cuhre, Divonne and Suave all provide consistently good results. The FDM
integrations are much more problematic because they involve time integrations
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for the PT kernels in addition to the the momentum integrations. In addition,
the PT kernels and the growth factor both exhibit strong oscillations for large
k. Integrations become very time-consuming and take as much 5 CPU hours for
the Monte Carlo integration of the one-loop contribution to the FDM bispectrum
at a single triangle configuration with a relative error of 10 %. For computing
the power spectrum loop corrections, we used the Vegas algorithm that stores
the integrand structure between different integration runs and thus accelerates
integration for different k values. For the bispectrum loop corrections, we used
the Divonne algorithm. We tested our integration routines by comparison against
analytical solutions in the CDM case derived by Makino, Sasaki and Suto (1992).
Further, we numerically verified that the FDM PT kernels reduced to the cor-
rect analytical CDM expressions for small k. Moreover, we implemented the
PT code independently in Python and C++ and cross-checked results. For the
numerical integration of the line-of-sight integrals, we combined the PT kernel
integrations, the loop integrations and the line-of-sight integrations into higher-
dimensional integrals that we integrated using the CUBA-library. This proved
advantageous since the line-of-sight integrations smooth oscillations and make the
loop integrations more numerically tractable. The signal-to-noise sums and χ2-
functionals were also computed as integrals using the CUBA-library. This led to
problems for the FDM loop-level bispectrum integrals. They are six-dimensional
and the line-of-sight integral to compute the lensing bispectra makes them seven-
dimensional. The computation of the loop-level signal-to-noise-ratio therefore
requires a three-dimensional integral over a seven-dimensional integral which did
not compute. Alternatively, we tested combining the signal-to-noise integrals and
the perturbative integrals to obtain a seventeen-dimensional integral which again
proved computationally intractable. In the CDM case, this approach yielded an
eleven-dimensional integral that we managed to integrate. We used this approach
to predict the loop-level bispectrum signal-to-noise ratios and χ2-functionals.

A.5 CDM PT with FDM IC

Figs. 59, 60 and 61 compare the lensing spectra computed using FDM PT
with their counterparts computed in CDM PT with FDM IC. For the latter,
we use the CDM coupling kernels obtained from the EdS recursion relations as
well as the CDM growth factors in the fiducial cosmology. The figures clearly
show that the difference of the lensing spectra computed with the two methods
is very small. We conclude that the suppression of the lensing spectra below the
quantum Jeans multipole order in PT lies mainly in the initial conditions and is
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not the result of the approximation of late-time FDM dynamics through FDM
PT.
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Figure 59: Dimensionless equilateral convergence spectrum configurations at z = 0. The
vertical, dotted lines correspond to 0.1 · `J , where the quantum Jeans multipole order `J is
defined in Eq. (230). FDM dynamics approximated by CDM PT with FDM IC.
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Figure 60: Dimensionless equilateral convergence bispectrum configurations at z = 0. The
vertical, dotted lines correspond to 0.1 · `J , where the quantum Jeans multipole order `J is
defined in Eq. (230). FDM dynamics approximated by CDM PT with FDM IC.
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Figure 61: Dimensionless equilateral square convergence trispectrum configurations at z = 0.
The vertical, dotted lines correspond to 0.1 · `J , where the quantum Jeans multipole order `J

is defined in Eq. (230). FDM dynamics approximated by CDM PT with FDM IC.

A.6 Method of Characteristics

The fact that solutions to the linear advection equation have a finite, constant
propgation speed hints at a fundamental property of first-order PDEs: They
admit characteristic curves on which solutions are constant. We denote a curve
in the x-y-plane by Γ(s) = (x(s), t(s)). Such a curve is called characteristic if

d
dsu(Γ(s)) = 0. (375)

Substituting this condition into the linear advection equation (236) yields

d
dsu(Γ(s)) = ∂u

∂x

dx
ds + ∂u

∂t

dt
ds

!= 0, (376)

and we find that the PDE reduces to the following system of ODEs:

dx
ds = a,

dt
ds = 1. (377)

The characteristic curves of the linear advection equation are straight parallel
lines given by

x(t) = x0 + at. (378)
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The unique solution at a point (x, t) is obtained by tracing back the characteristics
passing through the point (x, t) back to the point (x0, t0). Since the solution to
the PDE is constant along the characteristic, we find

u(x, t) = u(x0, t0) = u(x− a(t− t0), t0) = u0(x− a(t− t0), t0). (379)

The quantity u at the point (x0, t0) travels to the point (x, t) along the character-
istic with finite propagation speed a. This consideration also applies to a linear
system of first-order PDEs of the form

ut + Aux = 0, (380)

with a vector u and a constant matrix A. The linear conservation law is called hy-
perbolic if A is diagonalisable with real eigenvalues. In this case, diagonalisation
gives

vt + Dvx = 0, (381)

with n independent advection equations where the eigenvalues of A are the char-
acteristic velocities.

We can also apply the method of characteristic to non-linear first-order PDE’s.
For instance, Burger’s equation serves as prototype of a non-linear conservation
law

∂tu+ ∂xf(u) = 0. (382)

For f(t) = 1
2u

2, it reduces to the so-called inviscid Burger’s equation that de-
scribes the advection of a quantity u with the characteristic velocity u:

∂t + u∂xu = 0. (383)

Its characteristic curves are given by

x(t) = x0 + u0(x0)t, (384)

and we note that their slope depends on the initial value u0(x0). Crucially, this
implies that unlike in the linear case, the advection velocity is position-dependent
and characteristic curves can intersect. Such intersections correspond to shocks,
that is, discontinuities in the solution of PDEs. At these points, there are no
classical solutions, but infinitely many weak solutions to the PDE. This can be
intuitively seen because multiple characteristics lead from one intermediate state
to many initial states.In other words, there are infinitely many weak solutions to
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Burger’s equation for smooth initial conditions.

A.7 Slope Limiters in Phase Scheme

In designing, the phase scheme it turned out necessary to employ slope limiters
for both the density and phase fields. Fig. 62 shows a situation that would
typically become unstable if we use a naive higher-order discretisation of the HJ-
Madelung equations. While we expect interference at the filaments and halos
physically, the phase scheme fails and produces structures that look CDM-like.
The resulting filaments have a very high density and large gradients leading to
numerical instabilities without the use of a monotone, shock-capturing scheme
for evolving the continuity equation.

We therefore compared different slope limiters using different analytical solu-
tions to the Schrödinger equation. Fig. 63 shows the truncation errors for the
Gaussian wave packet test given by Eq. (60) for a number of different limiters.
They all produce a nearly second-order scheme, but the van Albada-limiter
gave a truncation error that is around one order of magnitude smaller than the
SMART-limiter in this test case. The difference was less severe for small density
perturbations and eigen- and coherent states of the harmonic oscillator, but we
still opt for the van Albada-limiter because its smooth behaviour reflects the
underlying physics of the Schrödinger equation well.
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Figure 62: Snapshots of evolution of wave function for Eq. (324) for phase and hybrid scheme
at time t = 2.0 . Wave scheme is employed within the subregions shown by a red rectangle.
Parameters set as in Fig. 46.
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Figure 63: Comparison of truncation errors for Gaussian wave packet (60) evolved to t = 0.25
for first order phase scheme (FO), higher-order phase scheme (SO) with different limiters (MC,
SMART, van Albada, van Leer) and FTCS wave scheme with second- and fourth-order finite
difference stencils.
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